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Abstract
We study a contract design problem between a principal and multiple agents. Each

agent participates in an independent task, in which it may exert costly effort towards
improving its probability of success, and the principal has a fixed budget which it can
use to provide outcome-dependent rewards to the agents. Assuming the principal cares
only about maximizing the agents’ probabilities of success, and not how much of the
budget it expends, we characterize the Pareto frontier of success probability profiles
that can be implemented in Nash equilibrium as equilibria of successful-get-everything
contracts. An immediate consequence of this result is that piece-rate contracts and
bonus-pool contracts, two types of contracts which are well-studied and motivated
in the literature on multi-agent contract design, are never optimal in this setting. We
then identify a natural subclass called priority-based weighted contracts which we show
is actually sufficient to implement the Pareto frontier, thus providing a significant
reduction in the dimensionality of the principal’s optimal contract design problem.
Finally, we solve the design problem for the special case with two agents and quadratic
costs where our results suggest that the structure of the optimal contract depends
primarily on the bias in the principal’s objective and is, to some extent, robust to the
heterogeneity in the agents’ cost functions.

1 Introduction

Consider a principal who has assigned individual tasks to multiple agents. The agents exert
some effort towards succeeding in their respective tasks, which determines their probabil-
ity of success. The principal does not observe the effort exerted by the participants, but
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gets to observe whether the agents succeeded or failed. For instance, consider a tech firm
running a crowdsourcing contest in which the participants work towards coming up with
an algorithm to solve a programming problem. The tech firm can check if a participant’s
submission works by running it on some test cases, but cannot directly observe the effort
exerted by the participants. Alternatively, consider a sales manager for a firm who has hired
some salespeople to sell the firm’s product. The manager can observe if the salesperson was
able to sell the product or not, but cannot directly observe the effort that the salesperson
exerted towards making the sale. For such environments, we study the principal’s problem
of finding a contract, which is a mapping from observed outcomes to a reward for each agent,
so as to incentivize the agents to expend effort into increasing their probability of success.

This environment presents a classic example of the hidden action assumption in principal-
agent models leading to problems of moral hazard. While there is a vast literature studying
such problems, it typically assumes that even though the principal suffers a monetary cost
from providing higher rewards/wages, it is unconstrained in its capacity to reward the agents.
But there are important settings in which the principal might be budget constrained, and
additionally, might not care about how much of this budget it exhausts in incentivizing the
agents. For instance, the sales manager might be endowed with an exogenous and fixed bud-
get by the firm that it can use towards rewarding its sales force, and the manager might not
care how much of this budget it exhausts as long as it able to get the sales in. For the tech
firm, the returns from getting a successful submission might be substantially higher than the
cost of rewarding the agents, and so it may not care so much about the expenses involved
in providing the rewards. With such considerations in mind, we consider the principal’s
contract design problem under the assumption that it is budget constrained and that it does
not care about how much of the budget is exhausted in rewarding the participants.

Our first result identifies a class of contracts whose equilibria characterize the Pareto fron-
tier of the success probabilities that can be sustained in equilibrium. This class of contracts,
which we refer to as successful-get-everything (SGE) contracts, has the property that only
the successful agents are rewarded, and in addition, the entire budget is split among them.
An important consequence of this result is that some contracts that have been well-studied
and motivated in the literature, like piece-rate contracts (each agent gets a fixed reward if
it succeeds and nothing if it fails) and bonus-pool contracts (a group of agents get rewarded
only if all of them succeed), actually lead to Pareto inferior equilibria in our setting. In
comparison to these contracts, which support fully independent or fully joint evaluation of
the agents’ performance, SGE contracts can be interpreted as inducing competition among
the agents, since they are all competing for a fixed budget, and their share of the prize
is typically decreasing in the set of agents that succeed. Thus, our result suggests that a
budget-constrained principal who does not care about how much of the budget it exhausts
is better off designing contracts that induce competition among the agents as compared to
those that foster teamwork or even treat them independently.
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Next, we identify a natural subclass of SGE contracts, which we refer to as priority-based
weighted (PW) contracts, and we show that these contracts are sufficient to implement the
Pareto frontier. A priority-based weighted contract assigns positive weights and priority
levels to the agents, and splits the budget among the highest-priority successful agents, with
each such agent receiving a fraction of the budget proportional to her weight. These contracts
can actually be well-approximated by simple weighted contracts which are PW contracts in
which all agents have the same priority. Since the weighted contracts are defined by just a
weight for each agent, the optimal contract is easy to interpret, and the dimensionality of
the search space is reduced from exponential to linear in the number of agents. In other
words, a principal, whose objective is monotone increasing in the success probabilities, can
simply optimize over the much smaller class of weighted contracts as compared to optimizing
over all contracts or all SGE contracts. We further show that for any equilibrium on the
Pareto frontier there is a unique PW contract that implements it, and hence the set of PW
contracts is minimal among sets of contracts that implement the Pareto frontier.

Lastly, we stress that both our results make no assumptions about heterogeneity of the
agents’ cost functions. This allows us to investigate the question of how the structure of
the optimal contract might depend on environmental features like the heterogeneity between
the agents and the inherent bias of the principal. As an application, we study this for the
special case of two agents with quadratic costs and find that under the optimal contract, the
principal assigns a higher weight to the agent whose success it values more, irrespective of the
discrepancy in the agents’ cost parameters. In particular, if the sales manager derives equal
value from the potential sales made by two salespeople, its optimal contract assigns equal
weights to them, irrespective of how talented each of them might be. Perhaps surprisingly,
this suggests that in some settings, the structure of the optimal contract exhibits a degree
of robustness to heterogeneity among the agents.

Related literature

There is a vast literature on principal-agent problems under moral hazard. In the canonical
model with a single agent (Holmström [19], Grossman and Hart [16]), the principal offers
a wage contract that defines the agent’s payment as a function of its observed output, and
then the agent chooses some unobserved action (effort) that determines the distribution over
outputs. A key finding is that optimal contracts reward the agent for output realizations
that are informative about the target level of effort (informativeness principle), and may
therefore be non-monotone in output. There has since been significant work studying vari-
ants of this single-agent model incorporating flexible actions (Georgiadis et al. [13]), multiple
tasks (Holmstrom and Milgrom [22], Bond and Gomes [4]), bounded payments (Jewitt et al.
[26]), combinatorial actions (Dütting et al. [9], Ezra et al. [11]), and informationally robust
design (Carroll [5], Zhang [41]). See Georgiadis [12], Holmström [21] for surveys of this lit-
erature. In particular, Bond and Gomes [4] study a related model in which a single agent
chooses effort levels for multiple tasks, each of which may succeed or fail, and finds that there
is excessive concentration on certain tasks and the structure of the optimal contract is fragile.
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Our paper contributes to the literature studying a principal contracting with multiple
agents. A major focus in this domain has been on the comparison of independent performance
evaluation (through piece-rate contracts), joint performance evaluation (through bonus-pool
contracts), and relative performance evaluation (through rank-order tournaments) in in-
centivizing the agents. Even though relative performance evaluation is noisier and joint
performance evaluation may lead to free riding, the literature has identified conditions un-
der which the optimal contract incorporates features of rank-order tournaments (Green and
Stokey [15], Lazear and Rosen [28], Malcomson [29], Mookherjee [31], Nalebuff and Stiglitz
[32]) or bonus-pool contracts (Itoh [25], Imhof and Kräkel [23], Kambhampati [27]). A re-
lated stream of literature with multiple agents has studied moral hazard in teams where the
agents’ actions jointly determine the team output and the principal cannot disentangle the
contributions of individual agents (Babaioff et al. [1], Holmstrom [20], Battaglini [3], Che
and Yoo [7], Winter [40], Dütting et al. [10], Ezra et al. [11], Prendergast [33], Dai and Toikka
[8]). Some other related papers include Castiglioni et al. [6], Haggiag et al. [17], Baiman and
Rajan [2], Goel et al. [14], who study the multi-agent contract design problem from very
different perspectives.

2 Model

There is a principal and n risk-neutral agents. Each agent i ∈ [n] participates in an in-
dependent task, in which it may succeed or fail. Each agent chooses a success probability,
pi ∈ [0, 1], and incurs a cost of ci(pi) in doing so. We assume that the each agent’s cost
function ci is strictly convex with ci(0) = c′i(0) = 0 and c′i(1) > 1.

The principal would like to incentivize the agents to maximize the probability that they
succeed in their tasks. The principal does not observe the agents’ choices pi, only whether
each agent succeeds or fails in her task. Thus, the principal can design a contract that
rewards the agents only based on the outcomes of the tasks. Additionally, we assume that
the principal has a fixed budget B = 11 that it can use to incentivize the agents so that the
total reward for the agents under any outcome cannot exceed the budget.

Definition 2.1. A contract is a function f = (f1, . . . , fn) : 2
[n] → R[n]

+ such that

• fi(S) ≥ 0 (limited liability) and

•
∑

j∈[n] fj(S) ≤ 1 (budget constraint)

for each i ∈ [n] and S ⊆ [n].

Under the contract f , if S is the set of agents who succeed, then each agent i receives
the reward fi(S). Thus, each agent’s reward may depend not only on whether she succeeds,

1The choice of B = 1 is for convenience in exposition; the same results hold with an arbitrary B > 0 with
the assumption that c′′i > B.
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but also on the success of the other agents. We will denote by F the set of contracts.

We assume that the principal cares only about maximizing the agents’ probabilities of suc-
cess, not how much of the budget it expends. Formally, we assume the principal’s preferences
are represented by a continuous, strictly increasing objective V (p1, . . . pn). For example, the
objective for a risk-neutral principal who makes a profit of wi if agent i succeeds in her task
would be given by

V (p1, . . . , pn) =
∑
i∈[n]

wipi.

A contract f ∈ F defines a normal-form game between the n agents, in which each agent
chooses pi ∈ [0, 1] and agent i′s payoff under the profile p = (p1, . . . , pn) is

ui(p) = E[fi(S)]− ci(pi) =
∑
S⊂[n]

fi(S)Pr
[n]
p (S)− ci(pi)

where
Pr[n]p (S) =

∏
i:i∈S

pi
∏

j:j∈[n]\S

(1− pj).

Observe that since the expected reward
∑

S⊂[n] fi(S)Pr
[n]
p (S) is linear in pi and the cost

functions are strictly convex, each agent’s utility function ui is strictly concave in pi. It
follows then that for any contract f ∈ F , a pure-strategy Nash equilibrium exists2. We will
denote by E(f) the set of equilibria for the contract f , and by E−1(p) the set of contracts
for which p is an equilibrium. We further denote by E the set of profiles that can be induced
as equilibria of some contract f :

E := {p ∈ [0, 1]n : p ∈ E(f) for some f ∈ F}.

We say that p ∈ E is Pareto optimal3 if it is a maximal element of E , and we denote by P
the set of Pareto optimal profiles.

The marginal utility of agent i at profile p is

∂ui(p)

∂pi
= ri(f, p−i)− c′i(pi),

where

ri(f, p−i) = E[fi(S) | i ∈ S]− E[fi(S) | i /∈ S] =
∑

S⊂[n]−i

(fi(S ∪ {i})− fi(S))Pr
[n]−i
p−i

(S)

2While we haven’t been able to establish uniqueness in general, we can use the diagonally strict concavity
condition of Rosen [34] to show that equilibrium is unique if the cost functions are sufficiently convex.

3This definition of Pareto optimality is non-standard; however, as we show, maximal elements of E
correspond to maximal equilibrium utility profiles in a sense that we make precise later.
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is agent i’s expected gain in reward from succeeding as compared to failing in her task. It
follows from concavity of ui that agent i has a unique best response given by the solution to
the first order condition

c′i(pi) = max{0, ri(f, p−i)}. (1)

We denote this unique best response by bi(f, p−i). Note that we assume c′i(1) > 1. Together
with the fact that under the principal’s budget constraint ri(f, p−i) ≤ 1, this ensures that
bi(f, p−i) < 1.

Finally, the principal’s problem is then to find a contract f ∈ F and an equilibrium
p ∈ E(f) which maximizes V (p), Since V is increasing and continuous, it is sufficient to
find a profile p∗ ∈ argmaxp∈PV (p) and a contract f ∗ ∈ E−1(p∗). In this paper, we will
provide a characterization of P and a canonical contract for each p ∈ P . We will use this
characterization to solve for some natural objectives of the principal.

3 Main results

To set the stage, consider the single-agent case. In this case, a contract f specifies the
agent’s reward when she is successful, f({1}), and her reward when she fails, f(∅). The
agent’s relative reward is

r1(f) = f({1})− f(∅)

and her best response is

b1(f) = (c′1)
−1(f({1})− f(∅)).

Under any objective V , the principal wishes to maximize b1(f). Hence, the principal should
choose a contract f that maximizes f({1}) − f(∅). Since f({1}) ≤ 1 and f(∅) ≥ 0, this is
uniquely achieved by using the contract f with f({1}) = 1 and f(∅) = 0. Hence, the prin-
cipal rewards the agent with the entire budget if she is successful and gives her no reward if
she fails.

Our first result shows that aspects of this optimal contract generalize when there is more
than one agent. We say that a contract is successful-get-everything if it gives each agent no
reward when she fails and it splits the entire budget among those agents who are successful.

Definition 3.1. A contract f is successful-get-everything (SGE) if

• fi(S) = 0 whenever i /∈ S and

•
∑

i∈S fi(S) = 1 whenever S ̸= ∅.

We denote by FSGE the set of SGE contracts.

Theorem 1. Suppose p ∈ E(f). Then, p ∈ P if and only if f ∈ FSGE.
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Observe that contracts like a piece-rate contract (where each agent i gets a fixed reward
if she is successful and 0 otherwise), or a bonus pool contract (where each agent gets a
nonzero share of the budget only if all agents succeed), are never successful-get-everything.
It follows from Theorem 1 that such contracts always produce Pareto inferior outcomes, and
so the choice of any such contract would be strictly suboptimal for any objective. In com-
parison, SGE contracts induce competition between the agents as they are all competing for
a fixed budget and their share of the reward will typically decrease (though not necessarily)
as more agents are successful. Theorem 1 says that such contracts always lead to Pareto
optimal equilibria. Thus, the result suggests that in environments where the principal’s ben-
efit from agents’ success greatly exceeds the cost of incentivizing them, or if the principal
operates with an exogenously provided budget, so that it is not concerned about budget
exhaustion, fostering competition among the agents through successful-get-everything con-
tracts creates stronger incentives than promoting teamwork via joint performance evaluation
through bonus-pool contracts or independent performance assessment through piece-rate
contracts.

Proving Theorem 1 is quite involved and nontrivial in comparison to the single-agent
case. Intuitively, if the principal chooses a contract which is not successful-get-everything,
it can adjust the contract in such a way that ri(f, p−i) increases for some agent. However,
because p is an equilibrium object, it is not true that an arbitrary increase in reward to a
successful agent or decrease in reward to an unsuccessful agent will necessarily produce a
Pareto improvement. The proof of Theorem 1 essentially demonstrates that there is always
some adjustment that the principal can make that will produce a Pareto improvement.

Observe that the set of SGE contracts is Θ(n2n)-dimensional, and a typical SGE contract
is complex and hard to interpret. However, as our next result shows, the principal can
optimize over an (n− 1)-dimensional, more interpretable set of contracts. We say that f is
a weighted contract if there exist (λ1, . . . , λn) with λi > 0 such that

fi(S) =

{
λi∑

j∈S λj
, if i ∈ S

0, otherwise

Weighted contracts assigns weights to the agents and reward each successful agent with
a fraction of the budget proportional to her weight. While weighted contracts alone are
insufficient to implement the Pareto frontier, the following class of contracts provides a
slight generalization which is sufficient.

Definition 3.2. A contract f is a priority-based weighted (PW) contract if there are weights
(λ1, . . . , λn) with λi > 0 and a non-strict ordering ≽ on the agents such that

fi(S) =

{
λi∑

j∈Top≽(S) λj
, if i ∈ Top≽(S)

0, otherwise

where Top≽(S) = {i ∈ S : i ≽ j ∀j ∈ S}.
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Priority-based weighted contracts reward each highest-priority successful agent with a
fraction of the budget proportional to her weight. We denote by FW and FPW the set of
weighted and priority-based weighted contracts, respectively. Note that FW ⊂ FPW ⊂ FSGE.

Theorem 2. If p ∈ P, there is a unique contract f ∈ FPW such that p ∈ E(f).

In words, if p is Pareto optimal, then there is a unique priority-based weighted contract
that implements p. Note that since this contract is unique, the set of PW contracts is
minimal among sets of contracts that implement the Pareto frontier. As a consequence of
Theorem 2, it follows that it is sufficient for the principal to optimize over the set of PW
contracts.

Corollary 1. For any strictly increasing, continuous objective V (p),

sup
f∈F

sup
p∈E(f)

V (p) = max
f∈FPW

max
p∈E(f)

V (p).

We note that Theorems 1 and 2 hold irrespective of the heterogeneity in the agents cost
functions. To illustrate our results and investigate how the structure of the optimal contract
may depend on the heterogeneity of the cost functions, we solve a tractable but nontrivial
example with two agents, quadratic costs, and linear objective.

Theorem 3. Suppose n = 2, ci(pi) =
1
2
Cip

2
i with Ci > 1, and V (p1, p2) = wp1 + ·p2. Then,

the optimal contract, defined by λ1(w), takes the form

fi(S) =


0, if i /∈ S

1, if S = {i}
λi(w), if S = {1, 2}

,

where λ2(w) = 1− λ1(w). Moreover, λ1(w) is increasing in w and in particular,

λ1(w) =


0, if w ≤ C1C2−C1

C1C2+C2−1
1
2
, if w = 1

1, if w ≥ C1C2+C1−1
C1C2−C2

.

With two agents, the set of PW contracts is parametrized by a single parameter λ that
represents agent 1’s share of the budget when both agents succeed, so that fi(S) = 0 when-
ever i /∈ S, fi(S) = 1 whenever S = {i}, and f1({1, 2}) = 1− f2({1, 2}) = λ. Using equation
1, we solve for the unique equilibrium of such a contract to get that

p1(λ) =
C2 − (1− λ)

C1C2 − λ(1− λ)
p2(λ) =

C1 − λ

C1C2 − λ(1− λ)
.

With this, the principal’s problem becomes maxλ∈[0,1] wp1(λ) + p2(λ). Theorem 3 follows
from a straightforward analysis of the first-order condition.
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As Theorem 3 demonstrates, agent 1’s share λ1(w) is increasing in w, and perhaps more
surprisingly, λ1(1) =

1
2
regardless of the Ci. Hence, if the principal cares equally about the

success of the two agents, it is optimal for the principal to design a symmetric weighted con-
tract that assigns equal weight to the two agents, even if the agents’ costs are heterogeneous.
More generally, the principal assigns a higher weight to the agent whose success it values
more, though the exact weights might depend on the cost parameters. Thus, Theorem 3
suggests that the structure of the optimal contract is, to some extent, robust to the hetero-
geneity in the cost functions.

We finish the discussion of this example by comparing the performance of PW contracts
with that of piece-rate and bonus pool contracts. First, consider a piece-rate contract where
agent i receives a reward of λi if she succeeds and 0 otherwise. Under such a contract,
p∗i = λi

Ci
. Observe that for λ ∈ (0, 1), p∗i < pi(λ) for both agents, and for λ ∈ {0, 1},

p∗i < pi(λ) for one of the agents. Hence, by increasing each agent’s reward when she alone
succeeds from λi to the entire budget, the principal can induce at least one of the agents to
strictly increase their probability of succeeding. Next, under a bonus-pool contract where
agent i receives a reward of λi if both agents succeed and a reward of 0 otherwise, both
agents choose a probability of success of 0 in equilibrium; hence, every PW contract is better
than every bonus-pool contract!

4 Pareto optimality

In this section, we will introduce and discuss the ideas and techniques that are used to obtain
the characterization of optimal contracts given in Theorem 1.

First, we show that a principal with arbitrary objectives (not necessarily increasing in
pi) can without loss of generality focus on contracts in which agents who fail get nothing.

Definition 4.1. A contract f is failures-get-nothing (FGN) if fi(S) = 0 whenever i /∈ S.

We denote by FFGN the set of FGN contracts. Note that every SGE contract is FGN.

Lemma 1. If p ∈ E, there is a contract g ∈ FFGN such that p ∈ E(g).

Proof. Let f ∈ F be a contract for which p is an equilibrium. Consider the contract g
defined by

gi(S) =

{
λifi(S), if i ∈ S

0, otherwise
.

where

λi =


ri(f, p−i)

E[fi(S) | i ∈ S]
if pi > 0

0 if pi = 0.
.
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Notice that it follows from the first-order condition in equation 1 that λi ≤ 1 so that g is
indeed an FGN contract. Now if pi > 0, agent i’s marginal utility at profile p under the
contract g is

∂ui(p)

∂pi
= E[gi(S) | i ∈ S]− c′i(pi)

= λiE[fi(S) | i ∈ S]− c′i(pi)

= ri(f, p−i)− c′i(pi)

= 0, (because p ∈ E(f))

so by concavity of payoffs, bi(g, p−i) = pi. If pi = 0, then gi(S) = 0 for all S, so bi(g, p−i) =
0 = pi. Hence, p ∈ E(g).

Observe that, given an equilibrium profile p ∈ E , the utilities of the agents at p generally
depend on the choice of contract used to induce p. For instance, pi = 0 for all i ∈ [n] is
the unique equilibrium under contract f , defined by fi(S) = 0 for all i ∈ [n] and S ⊂ [n],
and also under the contract g, defined by gi(S) = 0 for i ̸= 1 and g1(S) = 1 for all S ⊂ [n].
But the equilibrium utility of agent 1 is 0 under f and 1 under g. However, as the following
result shows, an agent’s utility at p is the same under every FGN contract for which p is an
equilibrium.

Lemma 2. If f ∈ FFGN and p ∈ E(f), then

ui(p) = pi · c′i(pi)− ci(pi)

under f for every agent i.

Proof. Since f ∈ FFGN , agent i’s utility at profile p is

ui(p) = pi · ri(f, p−i)− ci(pi).

Observe that ri(f, p−i) ≥ 0 since f ∈ FFGN And since p ∈ E(f), it follows from equation
1 that ri(f, p−i) = c′i(pi) and the result follows.

It follows from Lemmas 1 and 2 that for any p ∈ E , we can write u(p) to unambiguously
refer to the utility profile under any FGN contract f ∈ E−1(p). Note that since the agents’
cost functions are strictly concave,

d

dx
(x · c′i(x)− ci(x)) = x · c′′i (x) > 0

for x ∈ (0, 1), so u(p) is strictly increasing in p. Denote by U the set of equilibrium utility
profiles,

U := {u ∈ R[n] : u(p) = u for some p ∈ E}.

Corollary 2. If p ∈ E, then p ∈ P if and only if u(p) is a maximal element of U .
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This result squares our nonstandard definition of Pareto optimality with the standard
notion. An interesting consequence is that a principal restricted to using FGN contracts who
cared about maximizing the agents’ utilities rather than their success probabilities could still
maximize over P , and from Theorem 2, maximize over the class of PW contracts.

As described above, arbitrarily increasing the reward for some agent in the case of success
or decreasing the reward of some agent in case of failure does not necessarily result in a Pareto
improvement, since the increase in one agents’ probability of success may incentivize another
agent to decrease her probability of success. However, in the case where some agent chooses
pi = 0, there is a simple modification that induces her to increase her probability of success
without affecting the other agents’ incentives. As a consequence, it follows that every agent
chooses a nonzero probability of success in every Pareto optimal equilibrium profile.

Lemma 3. If p ∈ P, then pi > 0 for all i.

Proof. Let f ∈ E−1(p) be an FGN contract, and suppose pk = 0. Consider the contract g
where gi(S) = fi(S \ {k}) for i ̸= k and

gk(S) =

{
1, if S = {k}
0, otherwise

Let p′k = bk(g, p−i), and let p′ = (p′k, p−k). Observe that since bk(g, p−i) > 0, p′k > 0, and
for i ̸= k, ri(g, p

′
−i) = ri(f, p−i), so bi(g, p−i′) = bi(f, p−i) = pi. Hence, p′ ∈ E(g) and p′

dominates p. Thus, if pk = 0 for some k, then p /∈ P , and the result follows.

An important and useful consequence of Lemma 3 is that if p is Pareto optimal, it must
be that 0 < pi < 1 for all i ∈ [n], and therefore, for any S ⊂ [n], Pr[n]p (S) > 0.

In the following lemma, we note a useful property of FGN and SGE contracts.

Lemma 4. For any p ∈ E, E−1(p) ∩ FFGN , E
−1(p) ∩ FSGE are compact, convex subsets of

F .

Proof. Note first that since F is defined by weak linear inequalities, F is closed and con-
vex. Since |fi(S)| ≤ 1 for every f ∈ F , i ∈ [n], and S ⊆ [n], F is bounded, and it
follows that F is compact. Since FFGN and FSGE are defined by weak linear inequalities
and FSGE ⊆ FFGN ⊆ F , they are also bounded, so they are also compact and convex.

Now, recall from equation 1 that f ∈ E−1(p) if and only if c′i(pi) = max{0, ri(f, p−i)} for
all i. If f ∈ FFGN , then ri(f, p−i) ≥ 0, so f ∈ E−1(p) if and only if c′i(pi) = ri(f, p−i) for all
i. Since this is a system of equations that is linear in f , it follows that E(p) ∩ FFGN and
E(p) ∩ FSGE are closed and convex, and the result follows.
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This property is useful in that it allows us to obtain contracts that still have the same
equilibrium while also having some additional properties.

The following result will be the key to proving the optimality of SGE contracts. For
p ∈ [0, 1)n, define

z(p) =
∑
i

pi · c′i(pi) +
∏
i

(1− pi).

Lemma 5. If p ∈ E, then z(p) ≤ 1, and if p ∈ E(f) for some f ∈ FSGE, then z(p) = 1.

Proof. Observe that for any FGN contract f and profile p,

E

[∑
i∈S

fi(S)

]
=

∑
i

P[i ∈ S] · E[fi(S) | i ∈ S] =
∑
i

pi · ri(f, p−i).

Hence, if p ∈ E(f), then by equation 1,

E

[∑
i∈S

fi(S)

]
=

∑
i

pi · c′i(pi) = z(p)− P[S = ∅].

so

z(p) = E

[∑
i∈S

fi(S)

]
+ P[S = ∅].

Moreover,

E

[∑
i∈S

fi(S)

]
= P[S ̸= ∅] · E

[∑
i∈S

fi(S) |S ̸= ∅

]
≤ P[S ̸= ∅],

with equality if and only if f is SGE. Hence, for p ∈ E ,

z(p) ≤ P[S ̸= ∅] + P[S = ∅] = 1,

and if p is an equilibrium for some SGE contract, then z(p) = 1.

4.1 Characterization of optimal contracts

In this section, we discuss the key ideas to prove Theorem 1, which can be reformulated
equivalently as p ∈ P if and only if E−1(p) ⊆ FSGE. We first show that if p ∈ E(f) is Pareto
optimal, then the contract f must be SGE.
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Lemma 6. If p ∈ P and p ∈ E(f), then f ∈ FSGE.

One might suspect that when a contract f has some slack at some S ⊂ [n], the principal
can simply increase the reward of some agent i ∈ S and that this new contract g will lead
to a Pareto dominating equilibrium p′. It turns out this is not necessarily the case because
even though the marginal benefit for agent i is higher under g than f , and so the best re-
sponse of agent i will also be higher, this increase in agent i’s response might diminish some
other agent j’s marginal benefit leading agent j to reduce its pj. Thus, because of these
equilibrium effects, such a transformation of a non SGE contract may not necessarily lead
to Pareto improvements.

However, if a contract f is such that the budget is not being exhausted under any outcome
S, then we can actually scale the contract simultaneously for all agents (which may involve
increasing or decreasing an agent’s share) and at all S ⊂ [n] so as to obtain a Pareto superior
equilibrium. Now to prove Lemma 6, we basically show that if p ∈ E(f), f ∈ FFGN and
f /∈ FSGE, then we can use the previous lemmas, and in particular Lemma 4 about the
convexity of E−1(p) ∩ FFGN , to construct a contract g ∈ E−1(p) ∩ FFGN which has the
property that the budget is not exhausted under any outcome S. Going into more detail,
for any p ∈ P , we define the set

Kp := {S ⊆ [n] :
∑
i∈S

fi(S) < 1 for some f ∈ E−1(p) ∩ FFGN},

and show that if Kp ̸= {ϕ}, we can find a p′ that Pareto dominates p. First, we show that
Kp is closed under taking subsets. The argument is that if S ∈ Kp and T ⊂ S, we can pick
an agent i ∈ T and decrease its reward under T while increasing its reward in S so that p
is still an equilibrium. Then, we get that T ∈ Kp. By a similar argument, we show that Kp

is also closed under unions and thus, Kp = 2κp where κp ⊂ [n]. Next, we show that for any
f ∈ E−1(p)∩FFGN , agents in κC

p must have priority over those in κp in that if any agent in κC
p

succeeds, agents in κp get no reward. Using this, we construct a contract h ∈ E−1(p)∩FFGN

such that
∑

i∈S hi(S) < 1 for any S ⊂ κp and the reward for agent i /∈ κp do not depend on
the success or failure of agents in κp. We then show that we can manipulate the awards for
S ⊂ κp to get a new contract h′ such that p′ ∈ E(h′) where p′i = pi + ϵ for i ∈ κp and ϵ > 0
while p′i = pi for i /∈ κp. Thus, it must be that κp = ϕ which complete the proof of this part.

Observe that we get the following as an immediate consequence of Lemmas 5 and 6.

Corollary 3. If p ∈ P, then

z(p) =
∑
i

pi · c′i(pi) +
∏
i

(1− pi) = 1.

Corollary 3 provides a simple equation in terms of the model parameters (cost functions)
whose solutions contain the Pareto frontier P . So in principle, the principal can potentially
try to optimize its objective V (p) over the set of solutions to the equation z(p) = 1, and

13



then check if there is a contract f ∈ FSGE that implements this optimal solution.

The second direction of the characterization says that if f is an SGE contract and p ∈
E(f), then there is no p′ ∈ E which dominates p.

Lemma 7. If f ∈ FSGE and p ∈ E(f), then p ∈ P.

Proof. Suppose f ∈ FSGE, p ∈ E(f), but p is not Pareto optimal. Then, there must exist a
Pareto optimal q ∈ P that Pareto dominates p. Observe that since p ∈ E(f) and f ∈ FSGE,
we have from Lemma 5 that z(p) = 1. Also, since q ∈ P , we have from Corollary 3 that
z(q) = 1. Now, consider the following:

∂z

∂xi

∣∣∣
x≥p

= xic
′′
i (xi) + c′i(xi)−

∏
j ̸=i

(1− xj)

> c′i(xi)−
∏
j ̸=i

(1− xj) (because ci is convex)

≥ c′i(pi)−
∏
j ̸=i

(1− xj) (because ci is convex)

≥ c′i(pi)−
∏
j ̸=i

(1− pj) (because xj ≥ pj)

≥ 0 (because p ∈ E(f))

Note that the last inequality holds because we know from the first order condition in
equation 1 that c′i(pi) = ri(f, p−i) and ri(f, p−i) ≥

∏
j ̸=i(1− pj) since f ∈ FSGE.

Now, since q Pareto dominates p, q ≥ p and it follows from above that z(q) > z(p).
But this is a contradiction since z(q) = z(p) = 1. It follows then that p ∈ E(f) is Pareto
optimal.

Together, Lemmas 6 and 7 give Theorem 1.

4.2 Implementing the Pareto frontier

As Theorem 1 shows, Pareto optimal equilibria are exactly the equilibria of SGE contracts,
so it is sufficient for the principal to optimize over SGE contracts. Given the high dimension-
ality of the set of SGE contracts, this may still present the principal with a computationally
difficult problem, and the optimal contract may be difficult to understand and implement.
Theorem 2 provides a significant reduction in the complexity of the principal’s optimization
problem, reducing the search space from a (2n−1(n− 2)+1)-dimensional space of difficult to
interpret contracts to an (n− 1)-dimensional space of easily interpretable contracts.

To prove Theorem 2, we first obtain a useful relationship between any PW contract f
and the best responses bi(f, p−i) under any Pareto optimal profile p ∈ P .
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Lemma 8. Suppose p ∈ P and f ∈ FPW . Then, for every i ∈ [n],∑
j:i≽j

pj
[
c′j (bj (f, p−j))− c′j (pj)

]
≤ 0.

And in particular, ∑
i∈[n]

pi [c
′
i(bi(f, p−i))− c′i(pi)] = 0.

Proof. We want to show that if p ∈ P and f ∈ FPW , then for every i ∈ [n],∑
j:i≽j

pj
[
c′j (bj (f, p−j))− c′j (pj)

]
≤ 0,

where ≽ denotes the priority relation induced by f ∈ FPW .
Suppose p ∈ P , g ∈ E−1(p), and f ∈ FPW . We know from the first-order condition in

equation 1 that for all i ∈ [n],

c′i (bi (f, p−i)) =
∑

S⊂[n]−i

fi(S ∪ {i}) Pr[n]−i
p−i

(S).

Multiplying both sides by pi and adding up the equations for agents j such that i ≽ j, we
get ∑

j:i≽j

pjc
′
j(bj(f, p−j)) =

∑
j:i≽j

∑
S:j∈S

fj(S) Pr
[n]
p (S)

=
∑

S⊆{j:i≽f j}
Pr[n]p (S) (because f is PW)

≤
∑
j:i≽j

∑
S:j∈S

gj(S) Pr
[n]
p (S) (because g ∈ FSGE)

=
∑
j:i≽j

pjc
′
j(pj) (because g ∈ E−1(p))

Note that the inequality becomes equality when we are adding up over all i ∈ [n] and
thus, we get

∑
i∈[n] pi [c

′
i(bi(f, p−i))− c′i(pi)] = 0.

Now we are ready to show that for any Pareto optimal p, there exists a PW contract
that implements p.

Lemma 9. Suppose p ∈ P. Then, there exists f ∈ FPW such that p ∈ E(f).

To prove Lemma 9, we define for any f ∈ FPW ,

Z(f) := max
i∈[n]

[c′i(bi(f, p−i))− c′i(pi)] ,
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and show that
z = inf

f∈FPW

Z(f) = 0.

From Lemma 8, we already know that z ≥ 0. To prove z = 0, we basically show that if
z > 0 and f ∈ FPW attains z, then we can find another contract g ∈ FPW so that it attains
z′ < z. Informally, let z = c′i(bi(f, p−i))− c′i(pi) > 0, where i is chosen so that it has the
lowest priority among all agents with this property under f . Then all agents j with lower
priority than i must be such that c′j(bj(f, p−j))− c′j(pj) < z. We then construct another PW
contract g by grouping together agents in priority group of i and those in the immediately
lower priority group by giving a small weight ϵ to agents in the lower priority group. Then,
the best response of any agent j in i’s priority group to p−j will be smaller under g than f
while for any agents j in the lower priority group, it will be greater under g than f . For
ϵ > 0 small enough, we will have Z(g) < z.

With z = 0, we use compactness of FPW and Lemma 8 to get that there must be an
f ∈ FPW such that all i ∈ [n],

(c′i(bi(f, p−i))− c′i(pi)) = 0

which implies f ∈ E−1(p). Thus, for any Pareto optimal p, there is a PW contract f such
that p ∈ E(f). The following lemma establishes the uniqueness of the PW contract that
implements p.

Lemma 10. Suppose f ∈ FPW and p ∈ E(f). Then for any g ∈ FPW such that g ̸= f ,
p /∈ E(g).

Proof. Consider the case where f, g are weighted contracts and suppose towards a contra-
diction that p ∈ E(f) ∩ E(g). Let i ∈ [n] denote the agent with the smallest weight ratio
λg
i

λf
i

, where λf , λg represent the weights that define the contracts f, g ∈ FW . It follows from

the definition of weighted contracts that for any S ⊂ [n] such that i ∈ S, agent i’s reward
is weakly lower under g than f . As a result, it must be that ri(g, p−i) < ri(f, p−i) and so it
can’t be that bi(g, p−i) = bi(f, p−i). It follows that two different weighted contracts cannot
have the same equilibrium. The argument extends in a natural way to PW contracts.

Together, Lemmas 9 and 10 give Theorem 2. Moreover, it follows from Lemma 10 that
the class of PW contracts is minimal among classes of contracts that implement the Pareto
frontier.

5 Conclusion

We study a contract design problem between a principal and multiple agents. In a setting
where the principal is budget-constrained and does not care about how much of the budget
is exhausted in incentivizing the agents, we show that the maximal set of effort levels that
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can be sustained in equilibrium is characterized by equilibria of contracts in which the entire
budget is split among agents that succeed. Hence, piece-rate and bonus-pool contracts
are never optimal in this setting. We further identify a natural subclass of priority-based
weighted contracts that are sufficient to implement the Pareto frontier of equilibria that can
be induced in equilibrium. The result provides a significant reduction in dimensionality of
the optimal contract design problem. We illustrate this by applying our results to derive
the optimal contract for a special parametric case with two agents. Our result for this case
suggests that the structure of optimal contract is, to some extent, robust to the heterogeneity
in the agents’ cost functions. While it is difficult to give a closed form for the optimal contract
for a given objective, the significant reduction in dimensionality and the simple structure of
PW contracts suggests that approximating the optimal contract for given objective may not
be computationally hard. We leave this and related questions for further work.
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A Proofs for Section 3 (Main results)

Theorem 3. Suppose n = 2, ci(pi) =
1
2
Cip

2
i with Ci > 1, and V (p1, p2) = wp1 + ·p2. Then,

the optimal contract, defined by λ1(w), takes the form

fi(S) =


0, if i /∈ S

1, if S = {i}
λi(w), if S = {1, 2}

,

where λ2(w) = 1− λ1(w). Moreover, λ1(w) is increasing in w and in particular,

λ1(w) =


0, if w ≤ C1C2−C1

C1C2+C2−1
1
2
, if w = 1

1, if w ≥ C1C2+C1−1
C1C2−C2

.

Proof. We know from Theorem 2 that we can restrict attention to PW contracts. And with
only two agents, the set of PW contracts can be parametrized by a single parameter λ, where
fi(S) = 0 whenever i /∈ S, fi(S) = 1 whenever S = {i}, and f1({1, 2}) = 1− f2({1, 2}) = λ.
The equilibrium conditions for this contract from equation 1 are

C1p1 = 1− p2 + λp2

C2p2 = 1− p1 + (1− λ)p1.

For each λ, this system of equations has a unique solution:

p1(λ) =
C2 − (1− λ)

C1C2 − λ(1− λ)
p2(λ) =

C1 − λ

C1C2 − λ(1− λ)
· (2)

Hence, the principal’s problem is equivalent to:

max
λ∈[0,1]

wp1(λ) + p2(λ).

Using the first order condition, this is maximized either at λ = 0, or λ = 1, or where

p′2(λ)

p′1(λ)
= −w·

Note that

p′1(λ) =
(C1C2 − λ(1− λ))− (C2 − (1− λ))(2λ− 1))

(C1C2 − λ(1− λ))2
=

C1C2 − C2(2λ− 1)− (1− λ)2

(C1C2 − λ(1− λ))2

and

p′2(λ) =
−(C1C2 − λ(1− λ))− (C1 − λ)(2λ− 1)

(C1C2 − λ(1− λ))2
=

−C1C2 − C1(2λ− 1) + λ2

(C1C2 − λ(1− λ))2
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so

p′2(λ)

p′1(λ)
=

−C1C2 − C1(2λ− 1) + λ2

C1C2 − C2(2λ− 1)− (1− λ)2
= −C1

C2

· −λ2/C1 + 2λ+ C2 − 1

−(1− λ)2/C2 + 2(1− λ) + C1 − 1

Now observe that the numerator is increasing for λ < C1 and the denominator is decreasing
for λ > −(C2−1). In particular, the fraction is monotonically strictly increasing for 0 < λ <

1, so
p′2(λ)

p′1(λ)
is monotonically strictly decreasing. It follows then that there is a function λ1(w)

such that the unique optimal choice of λ is λ1 (w) and it is increasing in w. In particular,

p′2(λ)

p′1(λ)
≤ p′2(0)

p′1(0)
= −C1

C2

· C2 − 1

−1/C2 + C1 + 1
= − C1C2 − C1

C1C2 + C2 − 1

and

p′2(λ)

p′1(λ)
≥ p′2(1)

p′1(1)
= −C1

C2

· −1/C1 + C2 + 1

C1 − 1
= −C1C2 + C1 − 1

C1C2 − C2

Now if w ≤ −p′2(0)

p′1(0)
, the objective is decreasing in λ and thus λ1(w) = 0. And if w ≥ −p′2(1)

p′1(1)
,

the objective is increasing in λ and thus λ1(w) = 1.
Lastly, observe that

p′2(
1
2
)

p′1(
1
2
)
= −1

irrespective of the costs C1, C2. And thus, if w1 = w2, we get that λ∗ = 1
2
no matter how

heterogeneous the agents are.

B Proofs for Section 4 (Pareto optimality)

Lemma 6. If p ∈ P and p ∈ E(f), then f ∈ FSGE.

Proof. Suppose p ∈ P . Let

Kp := {S ⊆ [n] :
∑
i∈S

fi(S) < 1 for some f ∈ E−1(p) ∩ FFGN},

and let

κp := {i ∈ [n] : {i} ∈ Kp}.

We now show that Kp = {∅}.
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1. Step 1: Suppose S ∈ Kp. For any T ⊂ S, T ∈ Kp.

Let f ∈ E−1(p) ∩ FFGN be such that
∑

i∈S fi(S) < 1. If
∑

i∈T fi(T ) < 1, we are
done. Otherwise, pick an agent i ∈ T such that fi(T ) > 0 and consider a contract
g which differs from f only in its award for agent i at S and T . In particular, let g
be such that gi(S) = fi(S) + ϵ and gi(T ) = fi(T ) − δ where ϵ, δ > 0 are chosen so
that p ∈ E(g). Note that we can do this because we know from Lemma 3 that for all
i ∈ [n], 0 < pi < 1 and therefore, Pr[n]−i

p−i
(S) > 0 for all i ∈ [n] and all S ⊂ [n]−i. It

follows then that g ∈ E−1(p) ∩ FFGN and
∑

i∈T gi(T ) < 1. Thus, T ∈ Kp.

2. Step 2: Suppose S, T ∈ Kp. Then, S ∪ T ∈ Kp.

Let f, g ∈ E−1(p) ∩ FFGN be such that
∑

i∈S fi(S) < 1 and
∑

i∈T gi(T ) < 1. Consider
the contract h = 1

2
f+ 1

2
g. From Lemma 4, h ∈ E−1(p)∩FFGN and also

∑
i∈S hi(S) < 1

and
∑

i∈T hi(T ) < 1. Now, if
∑

i∈S∪T hi(S ∪ T ) < 1, we are done. Otherwise, pick any
agent i ∈ S ∪ T (WLOG, let i ∈ S) such that hi(S ∪ T ) > 0 and consider a contract
h′ which differs from h only in its award for agent i at S ∪ T and S. In particular, let
h′ be such that h′

i(S ∪ T ) = hi(S ∪ T ) − ϵ and h′
i(S) = hi(S) + δ where ϵ, δ > 0 are

chosen so that p ∈ E(h′). Again, we can do this because we know that for all i ∈ [n],
0 < pi < 1. It follows then that h′ ∈ E−1(p)∩FFGN and

∑
i∈S∪T h′

i(S ∪ T ) < 1. Thus,
S ∪ T ∈ Kp.

Note that it follows from Steps 1 and 2 that Kp = 2κp .

3. Step 3: Suppose f ∈ E−1(p) ∩ FFGN . Then, for all S ⊂ [n] such that κC
p ∩ S ̸= ϕ,

fi(S) = 0 for all i ∈ κp.

Suppose towards a contradiction that there is an S ⊂ [n] such that κC
p ∩ S ̸= ϕ and

fi(S) > 0 for some i ∈ κp. Let g ∈ E−1(p) ∩ FFGN be such that gi({i}) < 1. Consider
the contract h = 1

2
f+ 1

2
g. Then h ∈ E−1(p)∩FFGN and also hi(S) > 0 and hi({i}) < 1.

Now, consider a contract h′ which differs from h only in its award for agent i at S and
{i}. In particular, let h′ be such that h′

i({i}) = hi({i}) + ϵ and h′
i(S) = hi(S) − δ

where ϵ, δ > 0 are chosen so that p ∈ E(h′). We can do this because for all i ∈ [n],
0 < pi < 1. It follows then that h′ ∈ E−1(p) ∩ FFGN and

∑
i∈S h

′
i(S) < 1. But this

means that S ⊂ κp which is a contradiction.

4. Step 4: Suppose κp ̸= ϕ. Then there is a p′ that Pareto dominates p.

For all S ∈ Kp, let f
S ∈ E−1(p) ∩ FFGN be such that

∑
i∈S f

S
i (S) < 1. Consider the

contract g =
∑

S∈Kp

1
|Kp|f

S. Then g ∈ E−1(p) ∩ FFGN and also
∑

i∈S gi(S) < 1 for all

S ∈ Kp. Now, we can construct a contract h ∈ E−1(p) ∩ FFGN such that

hi(S) =

{
gi(S), if S ∈ Kp

hi(S \ κp), if S /∈ Kp

by averaging over the outcomes of agents in κp under g.
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Observe that if we manipulate h at any S ⊂ κp, it won’t change the best responses
for agents i /∈ κp. We will now show that we can manipulate the awards for S ⊂ κp

so that under the new contract h′, p′ ∈ E(h′) where p′i > pi for i ∈ κp and p′i = pi for
i /∈ κp. Towards this goal, let A = κp and let p′ = (pi + ϵ)i∈A. For each i ∈ A, let ti(ϵ)
solve

c′i(p
′
i) = ti(ϵ)

∑
S⊂A−i

(hi(S ∪ {i}))PrA−i

p′−i
(S)

Observe that as ϵ → 0, ti(ϵ) → 1 for all i ∈ A. Since
∑

i∈S hi(S) < 1 for all S ⊂ A
and ti(ϵ) is continuous in ϵ, we can find ϵ > 0 small enough so that the contract
h′
i(S) = hi(S) ∗ ti(ϵ) for all S ⊂ A and i ∈ S is a feasible contract. By the definition

of ti, p
′ with p′i = pi + ϵ for i ∈ κp and p′i = pi for i /∈ κp will be an equilibrium under

h′. Thus, we have that p is not Pareto optimal.

It follows then that Kp = {∅}. By definition of Kp, this means that for any f ∈ E−1(p),
either f /∈ FFGN or f ∈ FSGE. Now suppose there exists an f such that f /∈ FFGN and
p ∈ E(f). From Lemma 1, we can find g ∈ FFGN such that p ∈ E(g). Moreover, we know
from the construction of g in the argument of Lemma 1 that g /∈ FSGE. Thus, we have that
g ∈ FFGN , g /∈ FSGE, and p ∈ E(g). But this means that Kp ̸= ∅ which is a contradiction.
Therefore, it must be that for any f ∈ E−1(p), f ∈ FSGE.

Lemma 9. Suppose p ∈ P. Then, there exists f ∈ FPW such that p ∈ E(f).

Proof. Suppose p ∈ P . For any f ∈ FPW , let

Z(f) := max
i∈[n]

(c′i(bi(f, p−i))− c′i(pi))

and
C(f) := {i ∈ [n] : c′i(bi(f, p−i))− c′i(pi) = Z(f)}

From Lemma 8, we know that Z(f) ≥ 0 for all f ∈ FPW and so

z = inf
f∈FPW

Z(f) ≥ 0.

We will now show that z = 0.
Suppose towards a contradiction that z > 0. Let f ∈ FPW be such that

1. Z(f) = z and

2. for any other g ∈ FPW such that Z(g) = z, C(g) ̸⊂ C(f).
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Let (X1, . . . , Xℓ) be the ordered partition corresponding to ≽ and λ1, . . . , λn be the
weights that define f .

Let k be the maximum index such that Xk ∩ C(f) ̸= ∅.
First suppose k = ℓ. From Lemma 8, we know that there must be some i ∈ Xl such

that c′i(bi(f, p−i)) − c′i(pi) < 0. Now consider another PW contract g which is the same as
f , except that the weight for agent i is λ′

i = λi + ϵ. Thus, when all agents in [n] \Xl have
failed, agent i gets a slightly higher share of the reward if it succeeds under g than it did
under f . Notice that for j /∈ Xℓ,

c′j(bj(g, p−j))− c′j(pj) = c′j(bj(f, p−j))− c′j(pj)

and for j ∈ Xℓ \ {i},

c′j(bj(g, p−j))− c′j(pj) < c′j(bj(f, p−j))− c′j(pj) ≤ z.

Moreover, for ε sufficiently small,

c′i(bi(g, p−i))− c′i(pi) < 0

by continuity. It follows that Z(g) ≤ z. In particular, we either have Z(g) < z or Z(g) = z
and C(g) ⊂ C(f). In either case, we have a contradiction.

Thus, it must be that k < ℓ. Now, consider another PW contract g which has the
partition (X1, . . . , Xk−1, Xk ∪Xk+1, Xk+2, . . . , Xℓ) and weights

λ′
i =

{
λi if i /∈ Xk+1

ελi if i ∈ Xk+1

.

Then for j /∈ Xk ∪Xk+1,

c′j(bj(g, p−j))− c′j(pj) = c′j(bj(f, p−j))− c′j(pj)

and for j ∈ Xk,

c′j(bj(g, p−j))− c′j(pj) < c′j(bj(f, p−j))− c′j(pj) ≤ z.

Finally, for ε sufficiently small and j ∈ Xk+1,

c′j(bj(g, p−j))− c′j(pj) < z

by continuity. It follows that Z(g) ≤ z. In particular, we either have Z(g) < z or
Z(g) = z and C(g) ⊂ C(f). In either case, we have a contradiction. Thus, we have that
inff∈FPW

Z(f) = 0. By compactness of FPW , there exists an f ∈ FPW such that Z(f) = 0
which means [

max
i∈[n]

(c′i(bi(f, p−i))− c′i(pi))

]
= 0.
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But from Lemma 8, we also know that∑
i∈[n]

pi [c
′
i(bi(f, p−i))− c′i(pi)] = 0.

Therefore, it must be that for all i ∈ [n],

(c′i(bi(f, p−i))− c′i(pi)) = 0

which implies f ∈ E−1(p). Thus, for any Pareto optimal p, there is a PW contract f such
that p ∈ E(f).
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