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Abstract

We consider two-player contests with the possibility of ties and study the effect
of different tie-breaking rules on effort. For ratio-form and difference-form contests
that admit pure-strategy Nash equilibrium, we find that the effort of both players is
monotone decreasing in the probability that ties are broken in favor of the stronger
player. Thus, the effort-maximizing tie-breaking rule commits to breaking ties in favor
of the weaker agent. With symmetric agents, we find that the equilibrium is generally
symmetric and independent of the tie-breaking rule. We also study the design of
random tie-breaking rules that are ex-ante fair and identify sufficient conditions under
which breaking ties before the contest actually leads to greater expected effort than
the more commonly observed practice of breaking ties after the contest.

1 Introduction

Contests are situations in which agents exert costly effort to win one or more prizes. Ex-
amples of such competitive situations include sporting contests, promotional tournaments,
political contests, R&D races, etc. In many of these situations, it is often the case that
there is no outright winner and the contest ends in a draw or a tie. Moreover, a draw may
not be an acceptable outcome for the designer. For instance, in sports competitions such
as cricket, chess, and soccer, a significant fraction of the games end in a draw. But if these
games happen to be knockout games of a world event, the designer must determine a single
winner. Many different tie-breaking rules have been used to determine a winner in such
situations. The result might be decided by chance1 or it might be pre-determined based on

∗We are grateful to Arunava Sen, Federico Echenique, Wade Hann-Caruthers, the Editor Carmen Bevia,
and referees for the Journal of Mathematical Economics, as well as referees and participants at the 9th
Annual Conference on Contests: Theory and Evidence (2023) for helpful comments and suggestions.
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1The outcome of many elections that ended with ties have been determined via a coin toss (e.x. Kentucky

city mayor race 2022). Even in sporting competitions where ties are broken by another short duration contest,
like the super over in cricket or the penalty shootout in soccer, it can be argued that the outcome is almost
a random draw as there is relatively little scope for skill or effort to have an impact.
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some personal attributes like age, sex, height, weight, or status (incumbent or challenger)2.
In this paper, we consider contests between two agents and focus on understanding how
different tie-breaking rules compare in terms of the effort they induce.

We study the effect of tie-breaking rules for three contest environments that differ in how
the effort exerted by the players determine the distribution over contest outcomes (player 1
wins, player 2 wins, or tie). We study ratio-form contests (Tullock [35], Baik [2], Ewerhart
[14], Wang [37], Nti [31, 32]), difference-form contests (Hirshleifer [19], Baik [1], Skaperdas
[33], Beviá and Corchón [4], Che and Gale [7]), and lastly, we discuss examples of concave
contests (Blavatskyy [5], Fu and Wu [16]). While the literature has typically assumed only
two possible outcomes3, we will consider generalizations of these contests that allow for
the possibility of ties (Blavatskyy [5], Jia [22], Vesperoni and Yildizparlak [36]). A feature
of some of these generalizations is that the probability of tie increases as the efforts come
closer, and in particular, it is maximized when both agents exert equal efforts. Motivated
by this, with ratio-form and difference-form contests, we assume that the probability of a tie
increases as the contest becomes more equal (ratio of efforts goes to 1 or difference goes to
0). In addition, we make assumptions that ensure existence and uniqueness of pure-strategy
Nash equilibrium.

We make two primary contributions. First, we find that when the two agents differ in
their value from winning, their effort is decreasing in the probability that the ties are broken
in favor of the stronger player. Thus, an effort-maximizing contest designer would prefer
to commit to breaking ties in favor of the weaker player. In this way, our results lend sup-
port to the idea of leveling the playing field and increasing the competitive balance of a
contest to increase effort. Second, we find that with symmetric agents, the equilibrium is
generally symmetric and independent of the tie-breaking rule. We also discuss the design of
random unbiased tie-breaking rules and identify conditions under which breaking ties before
the contest would lead to greater effort than the standard practice of breaking them after
the contest has ended in a tie. For all our results, we identify parametric classes of contests
that satisfy our assumptions and discuss the application of our results to them.

There is a growing literature studying the effect of introducing ties on equilibrium effort
in contests. For concave contests with ties, introduced by Loury [25] and axiomatized by
Blavatskyy [5], the possibility of a tie has been shown to reduce total equilibrium effort (Nti
[30], Deng et al. [11], Li et al. [24]) though it may increase winner’s expected effort (Deng
et al. [11]) or even total effort in a winner-pay setting (Minchuk [28]). In all-pay auctions,
finite strategy spaces and bid gaps have been used to study the effect of introucing ties

2In weightlifting contests, ties were resolved, until 2016, in favor of the lighter athlete. In boxing, if a
championship bout ends in a draw, the champion usually retains the title. In the 1999 Cricket World Cup,
the tied semi-final match between Australia and South Africa went to Australia because they had defeated
South Africa earlier in the tournament.

3Surveys of this literature can be found in Garfinkel and Skaperdas [17], Jia et al. [23], Corchón and
Serena [10], Chowdhury et al. [8], Mealem and Nitzan [27]
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(Eden et al. [13], Cohen and Sela [9], Gelder et al. [18]). Other related work has illustrated
the merits of introducing draws in different contests (Nalebuff and Stiglitz [29], Imhof and
Kräkel [20, 21], Chang et al. [6]). In comparison to this literature, a tie is a natural outcome
in our contests and the prize is awarded irrespective of the contest outcome.

The paper contributes to the literature studying the effect of draw prizes on effort. Most
of the work in this domain assumes symmetric agents and studies the effect of a common
draw prize on effort. For a generalization of ratio-form contests to allow for ties, Vesper-
oni and Yildizparlak [36] find that there is a unique symmetric equilibrium that does not
depend on the common draw prize4. In ratio-form contests, Jia [22] shows that there is
always a unique equilibrium that is symmetric even though the contest might be biased5.
They illustrate how introducing ties with no prizes can lead to equilibrium that is no longer
symmetric. In comparison to this literature, our model allows for asymmetric agents and
can be interpreted as studying the effects of awarding complementary draw prizes. We find
that for both Vesperoni and Yildizparlak [36] and Jia [22] contests, the equilibrium effort
is decreasing in the probability that a tied contest is awarded to the stronger player. In a
similar spirit, Szech [34] finds that an asymmetric tie-breaking rule that favors the weaker
player increases expected bids in an all-pay auction environment.

The paper also contributes to the literature studying the effect of leveling the playing
field on effort in contests with heterogeneous agents. There are many different mechanisms
that have been studied including multiplicative biases and additive headstarts6. In short, it
has been found that if the designer cares about increasing effort and can optimally choose
multiplicative biases, it cannot gain from being able to further choose additive biases or
introduce draws (Fu and Wu [16], Franke et al. [15], Li et al. [24]). We believe ours is the
first to consider this idea of leveling the playing field in the context of tie-breaking rules. We
note here that for some contests (like the class of concave contests from Fu and Wu [16]),
the choice of a tie-breaking rule is essentially equivalent to defining different head-starts for
the two players. However, the tie-breaking rule imposes constraints on the set of feasible
head-starts (such as the sum of head-starts must be a constant) and so the problem of finding
the optimal tie-breaking rule in these contests is still different from the problem of finding
optimal headstarts as considered in these papers.

The paper proceeds as follows. In section 2, we present our model of a two-player contest
with ties. In section 3 and 4, we study ratio-form and difference-form contests respectively. In
section 5, we discuss some other contest examples and study the design of random unbiased
tie-breaking rules. Section 6 concludes. Most of the proofs are relegated to the appendix.

4They also find conditions under which the equilibrium effort is greater with the possibility of draw as
compared to without it, even though the draw prize may be 0.

5This is referred to as the homogeneity paradox as one would probably expect that players put in different
levels of effort if the contest favors one player over another.

6Surveys of this literature can be found in Mealem and Nitzan [27], Chowdhury et al. [8].
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2 Model

There are two risk-neutral players competing in a contest. The contest has three possible
outcomes: player 1 wins, player 2 wins, or it may be a tie. The distribution over the three
outcomes is determined by the efforts x1 ≥ 0, x2 ≥ 0 exerted by the two players. We let
pi(x1, x2) denote the probability that player i wins and p0(x1, x2) denote the probability that
the contest ends in a tie. Thus, for any x1, x2 ≥ 0, p1 + p2 + p0 = 1. In case of a tie, the
designer awards the contest to player 1 with probability q ∈ [0, 1] and awards it to player
2 with remaining probability 1 − q. We refer to q as the tie-breaking rule. Note that q
is independent of the effort exerted by the agents. Given the tie-breaking rule q, player 1
eventually wins the contest with probability P1 = p1 + qp0 while player 2 eventually wins
with probability P2 = p2+(1− q)p0. The value of player i ∈ {1, 2} from winning the contest
is Vi, where we assume V1 ≥ V2 > 0. The cost of exerting effort xi for player i is given
by c(xi) where c : R+ → R+ is a cost function. We will assume either linear c(x) = x or
quadratic costs c(x) = x2 in our analysis.

Given a contest C = (V1, V2, p1(), p2(), q, c()), player 1’s payoff under profile (x1, x2) is

Π1(x1, x2) = V1(p1(x1, x2) + qp0(x1, x2))− c(x1),

and that of player 2 is

Π2(x1, x2) = V2(p2(x1, x2) + (1− q)p0(x1, x2))− c(x2).

An effort profile (x∗
1, x

∗
2) is a pure-strategy Nash equilibrium if

Π1(x
∗
1, x

∗
2) ≥ Π1(x1, x

∗
2) for all x1 ∈ R+ and Π2(x

∗
1, x

∗
2) ≥ Π2(x

∗
1, x2) for all x2 ∈ R+.

We will impose conditions on C that guarantee the existence and uniqueness of a pure-
strategy Nash equilibrium, characterized by the first-order conditions. We note here the two
first-order conditions. The first-order condition for player 1 is

∂Π1

∂x1

= 0 =⇒ V1

(
∂p1
∂x1

+ q
∂p0
∂x1

)
= c′(x1), (1)

and that for player 2 is

∂Π2

∂x2

= 0 =⇒ V2

(
∂p2
∂x2

+ (1− q)
∂p0
∂x2

)
= c′(x2). (2)

Given V1, V2, p1(), p2(), c(), we consider the designer’s problem of choosing a tie-breaking
rule q ∈ [0, 1] so as to maximize the total effort in the pure-strategy Nash equilibrium7.
Formally, the designer’s problem is

max
q∈[0,1]

x1(q) + x2(q)

where xi(q) refers to the equilibrium effort level of player i under the contest given by
C = (V1, V2, p1(), p2(), q, c()). Going forward, we will study and solve the designer’s problem
for different classes of contest games.

7We note here that for some of our results, we only need the objective to be an increasing function of the
efforts.
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3 Ratio-form contest success functions

In this section, we consider instances of our model where the distribution over the three

outcomes depends only on the ratio of the efforts θ =
x1

x2

of the two players. Formally, we

assume that there exist twice-differentiable functions p : R+ → [0, 1] and p0 : R+ → [0, 1]
such that

• p1(x1, x2) = p(θ) and p2(x1, x2) = p(1
θ
),

• p0(x1, x2) = p0(θ) and p0(θ) = p0(
1
θ
) for all θ ∈ R+,

• c(x) = x.

We’ll make the following assumption on these functions.

Assumption 1. Let zq(θ) = p(θ) + qp0(θ).

• For any q ∈ [0, 1], z′q(θ) > 0, z′′q (θ) < 0, and 2z′q(θ) + θz′′q (θ) > 0, for all θ in R+.

• For any q ∈ [0, 1], zq(0) = 0 and limθ→∞ zq(θ) = 1

Note that zq(θ) denotes the probability that player 1 eventually wins the prize and 1 −
zq(θ) is the probability that player 2 wins eventually wins the prize. The first part of the
assumption then says that a player’s probability of winning is increasing in its own effort,
decreasing in the effort of the other player, and in addition, it is increasing at a decreasing
rate in one’s own effort. The second part of the assumption says that if a player exerts
0 effort while the other player exerts a positive effort level, its probability of winning is 0
irrespective of the tie-breaking rule q.

The next assumption we make is on the probability of ties p0(θ) and is motivated by the
idea that the probability of a tie increases as the contest becomes more closely contested.

Assumption 2. The probability of tie p0(θ) is increasing for θ ∈ (0, 1] and decreasing for
θ ∈ [1,∞).

We first provide a characterization of the pure-strategy Nash equilibria of the ratio-form
contest game with ties.

Theorem 1. Consider a ratio-form contest satisfying Assumption 1. The contest has a
unique pure-strategy Nash equilibrium defined by

x∗
1 = V1βz

′
q(β) and x∗

2 = V2βz
′
q(β),

where β = V1

V2
≥ 1.
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To prove the result, we show that there is a unique solution to the first-order conditions
1 and 2 for the contest game defined by x∗

1 and x∗
2. The concavity of the payoffs implied

by Assumption 1 means that the second-order conditions for maximization are satisfied8.
We note here that the result also follows from the result of Baik [2] who characterized the
pure-strategy Nash equilibrium of two player ratio-form contests satisfying Assumption 1.

The next result shows that the effort-maximizing tie-breaking rule breaks ties in favor of
the weaker agent.

Theorem 2. Consider a ratio-form contest satisfying Assumptions 1 and 2.

• If V1 > V2, x
∗
1(q)+x∗

2(q) is decreasing in q and so the optimal tie-breaking rule is q = 0.

• If V1 = V2, x
∗
1(q) + x∗

2(q) is independent of q.

First consider the case where the agents are symmetric so that β = V1

V2
= 1. Observe

that in this case, both agents exert equal effort, irrespective of the bias introduced by the
tie-breaking rule q. Intuitively, this is because at any symmetric profile, a player’s effort
has zero marginal impact on the probability of a tie, and therefore, the tie-breaking rule q
does not affect the symmetric equilibrium. With asymmetric agents, we again have that the
stronger agent puts in greater effort, irrespective of the bias due to the tie-breaking rule q.
In particular, the marginal impact of q on player i’s effort is simply Viβp

′
0(β). Since β > 1,

p′0(β) < 0 and it follows that the effort of both agents goes down as q increases. Thus, even
if the designer had a more general objective function that was increasing in the effort of both
agents, it would still be optimal for the designer to bias the tie-breaking rule completely in
favor of the weaker player with q = 0. Formally, the result follows from the fact that the
total equilibrium effort is linear in q with the coefficient (V1 + V2)βp

′
0(β). The full proof is

in the appendix.

The Tullock contests, defined by pi(xi, x−i) =
xr
i

xr
i+xr

−i
for r ∈ (0,∞), is an important class

of ratio-form contest success functions that have been widely studied in the literature. There
has been significant work in generalizing the Tullock contests to allow for the possibility of
ties. We will consider three such generalizations. For two of these generalizations, the con-
test success functions take the ratio form and we discuss how our results apply to them next.
The third generalization by Blavatskyy [5] is discussed later.

The first generalization we consider is given by pi(xi, xj) =
xrk
i

(xr
i+xr

j )
k with k ≥ 1 so that

the probability of ties is p0(xi, xj) =
(xr

i+xr
j )

k−xrk
i −xrk

j

(xr
i+xr

j )
k . This was proposed by Vesperoni and

Yildizparlak [36]. In this case, we obtain the following lemma.

8Note that Assumption 1 implies that the players payoffs Πi are strictly concave in their actions xi. Since
the argument relies on there being a unique solution to the first-order conditions, we can relax Assumption
1 so that payoffs are only required to be quasiconcave and the result would go through.
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Lemma 1. Suppose C is a ratio-form contest with pi(xi, xj) =
xrk
i

(xr
i+xr

j )
k where k ≥ 1. If

rk ≤ 1, then for any q ∈ [0, 1], the contest has a unique pure-strategy Nash equilibrium
defined by

x∗
1 = V1rk

βrk + q(βr − βrk)

(1 + βr)k+1
and x∗

2 = V2rk
βrk + q(βr − βrk)

(1 + βr)k+1
,

where β = V1

V2
.

To prove the result, we define the functions p(θ), p0(θ) and show that they satisfy As-
sumptions 1, 2 when rk ≤ 1 with r ≤ 1, k ≥ 1. Note that the conditions in the lemma are
sufficient but not necessary for the result. The full proof is in the appendix.

The second generalization we consider is given by pi(xi, xj) =
xr
i

xr
i+kxr

j
with k ≥ 1 so that

the probability of ties is p0(xi, xj) = 1− xr
i

xr
i+kxr

j
− xr

j

kxr
i+xr

j
. This was proposed by Jia [22]. In

this case, we obtain the following lemma.

Lemma 2. Suppose C is a ratio-form contest with pi(xi, xj) =
xr
i

xr
i+kxr

j
where k ≥ 1. If r ≤ 1,

then for any q ∈ [0, 1], the contest has a unique pure-strategy Nash equilibrium defined by

x∗
1 = V1rkβ

r

(
1

(βr + k)2
+ q

(
1

(1 + kβr)2
− 1

(βr + k)2

))
and

x∗
2 = V2rkβ

r

(
1

(βr + k)2
+ q

(
1

(1 + kβr)2
− 1

(βr + k)2

))
,

where β = V1

V2
.

Again, we define the functions p(θ), p0(θ) and show that Assumptions 1 and 2 are satisfied
when r ≤ 1. The full proof is in the appendix. Observe that in Lemmas 1 and 2, if we plug
in k = 1, we get back the equilibrium characterization for the Tullock contests without ties
(Nti [31]). Also, the total effort under the optimal tie-breaking rule (q = 0) in the Vesperoni

and Yildizparlak [36] contest is (V1 + V2)rk
βrk

(1+βr)k+1 and that under the Jia [22] contest is

(V1 + V2)rk
βr

(k+βr)2
. Since both are increasing in k at k = 1, it follows that if the designer

could induce ties by increasing k and then commit to breaking them in favor of the weaker
player, it would induce greater effort than in the standard Tullock contests.

4 Difference-form contest success functions

In this section, we consider instances of our model where the distribution over the three
outcomes depends only on the difference of the efforts θ = x1−x2 of the two players. Formally,
we assume that there exist twice-differentiable functions p : R → [0, 1] and p0 : R → [0, 1]
such that
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• p1(x1, x2) = p(θ) and p2(x1, x2) = p(−θ),

• p0(x1, x2) = p0(θ) and p0(θ) = p0(−θ) for all θ ∈ R,

• c(x) = x2/2.

We’ll make the following assumption on these functions.

Assumption 3. Let zq(θ) = p(θ)+qp0(θ). For any q ∈ [0, 1], z′q(θ) > 0 and z′′q (θ) ∈ [− 1
V1
, 1
V1
].

Here again, zq(θ) denotes the probability that player 1 eventually wins the prize and
1 − zq(θ) is the probability that player 2 wins eventually wins the prize. The assumption
then says that a player’s probability of winning is increasing in its own effort, decreasing in
the effort of the other player. The second assumption ensures that the player’s objective
function is globally concave and a unique best response exists.

The next assumption we make is on the probability of ties p0(θ) and is again motivated by
the idea that the probability of a tie increases as the contest becomes more closely contested.

Assumption 4. The probability of tie p0(θ) is increasing for θ ∈ (−∞, 0] and decreasing
for θ ∈ [0,∞).

Let us now characterize the pure-strategy Nash equilibria of this difference-form contest
game with ties.

Theorem 3. Consider a difference-form contest satisfying Assumption 3. The contest has
a unique pure-strategy Nash equilibrium defined by

x∗
1 = V1z

′
q(β(q)) and x∗

2 = V2z
′
q(β(q)),

where β(q) is the unique solution to the equation θ = (V1 − V2)z
′
q(θ).

To prove the result, we show that there is a unique solution to the first-order conditions
1 and 2 for the contest game defined by x∗

1 and x∗
2. The concavity of the payoffs implied by

Assumption 1 means that the second-order conditions for maximization are satisfied9. The
full proof is in the appendix.

Note that the solution β(q) to the equation θ = (V1 − V2)z
′
q(θ) is unique and ≥ 0 for all

q ∈ [0, 1]. It represents the difference in equilibrium effort levels exerted by the two agents.

That is, the equilibrium effort levels x∗
1, x

∗
2 are such that

x∗
1

x∗
2
= V1

V2
and x∗

1 − x∗
2 = β(q).

Next, we discuss the effect of the tie-breaking rule q on total equilibrium effort.

Theorem 4. Consider a difference-form contest satisfying Assumptions 3 and 4.

• If V1 > V2, x
∗
1(q)+x∗

2(q) is decreasing in q and so the optimal tie-breaking rule is q = 0.

• If V1 = V2, x
∗
1(q) + x∗

2(q) is independent of q.

9Assumption 3 implies that the players payoffs Πi are concave in xi. The result goes through if the payoffs
Πi are instead assumed to be quasiconcave in xi.
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To prove Theorem 4, we can use Theorem 3 and our assumptions on p0 to see how the
total effort changes as we increase q. When V1 > V2, player 1 puts in greater effort so that
p′0(x

∗
1−x∗

2) < 0. This implies that R(q) is decreasing in q and thus, the optimal tie-breaking
rule sets q = 0. In comparison, when V1 = V2, the agents exert equal effort irrespective of
q and because p′0(0) = 0, it follows that the total effort does not depend on the choice of q.
The full proof is in the appendix.

The difference-form contest success functions were first studied in Hirshleifer [19]. A well-

known example, with zero probability of ties, is the logit function pi(x1, x2) =
exp(xi)

exp(xi)+exp(x−i)
.

While we are not aware of explicit work on generalizing these contest success functions to
allow for the possibility of ties, we consider a couple of generalizations inspired from the lit-
erature on generalizing ratio-form contest success functions to allow for the possibility of ties.

The first generalization we consider is given by pi(xi, xj) =
(

exp(xi)
exp(xi)+exp(x−i)

)k

with k ≥ 1.

In this case, we obtain the following lemma.

Lemma 3. Suppose C is a difference-form contest with pi(xi, xj) =
(

exp(xi)
exp(xi)+exp(x−i)

)k

with

k ≥ 1. There exist some V̄ > 0 such that if V̄ ≥ V1 ≥ V2 > 0, then for any q ∈ [0, 1], the
contest has a unique pure-strategy Nash equilibrium defined by

x∗
1 = V1z

′
q(β(q)) and x∗

2 = V2z
′
q(β(q)),

where β(q) is the unique solution to the equation θ = (V1 − V2)z
′
q(θ).

To prove the result, we show that z′q(θ) > 0 and also limθ→∞ z′′q (θ) = 0 and limθ→−∞ z′′q (θ) =
0 which implies z′′q (θ) is bounded between some M and m. Thus, if we take V1 small enough
so that −1

V1
≤ m ≤ M ≤ 1

V1
, Assumption 3 will be satisfied. We further show that this contest

satisfies Assumption 4 so that Theorem 4 applies.

The next generalization we consider is given by pi(xi, xj) =
exp(xi)

exp(xi)+k exp(x−i)
with k ≥ 1.

In this case, we obtain the following lemma.

Lemma 4. Suppose C is a difference-form contest with pi(xi, xj) = exp(xi)
exp(xi)+k exp(x−i)

with

k ≥ 1. There exist some V̄ > 0 such that if V̄ ≥ V1 ≥ V2 > 0, then for any q ∈ [0, 1], the
contest has a unique pure-strategy Nash equilibrium defined by

x∗
1 = V1z

′
q(β(q)) and x∗

2 = V2z
′
q(β(q)),

where β(q) is the unique solution to the equation θ = (V1 − V2)z
′
q(θ).

As before, we show that z′q(θ) > 0 and also limθ→∞ z′′q (θ) = 0 and limθ→−∞ z′′q (θ) = 0
which implies z′′q (θ) is bounded between some M and m. It follows that 3 and 4 will be
satisfied if V1 is small enough and thus, we can apply Theorems 3 and 4 to get the result.
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5 Discussion

In this section, we consider some other examples of contests and also discuss the design of
random tie-breaking rules.

5.1 Concave contests

Here we consider contests C = (V1, V2, p1(), p2(), q, c()) that satisfy the following assumption.

Assumption 5. The contest success functions take the form

pi(x1, x2) =
fi(xi)

f1(x1) + f2(x2) + 1
and p0(x1, x2) =

1

f1(x1) + f2(x2) + 1

where fi : R+ → R+ is twice-differentiable, strictly increasing, and concave.

This class of contest success functions with a possibility of tie was axiomatized by
Blavatskyy [5]. For such contest success functions, we have the following lemma.

Lemma 5. Suppose the contest C satisfies Assumption 5. Then, for any increasing and
convex cost function c with c(0) = 0 and any tie-breaking rule q ∈ [0, 1], the contest admits
a unique pure-strategy Nash equilibrium.

Given a tie-breaking rule q ∈ [0, 1], we can define impact functions g1(x1) = f1(x1) + q
and g2(x2) = f2(x2)+(1−q) which, together with a convex cost function, constitute a regular
concave contest (as defined in Definition 1 of Fu and Wu [16]). The result then follows from
Theorem 1 of Fu and Wu [16] which says that there exists a unique pure-strategy Nash
equilibrium in regular concave contest games10.
The unique pure-strategy Nash equilibrium may involve both players exerting positive effort,
in which case it is characterized by the first-order conditions 1 and 2. Going forward, we
will focus on the special case where f1(x) = f2(x) = f(x) = xr for r ∈ (0, 1] and c(x) = x.
With these parametric assumptions, the first-order conditions are given by

V1P2rx
r−1
1 = xr

1 + xr
2 + 1 = V2P1rx

r−1
2 ,

where P2 = p2 + (1− q)p0 and P1 = p1 + qp0.
We note here that for r = 1, the solution to these conditions is

x∗
1 =

V 2
1 V2

(V1 + V2)
2 − q and x∗

2 =
V1V

2
2

(V1 + V2)
2 − (1− q),

and it will constitute the unique pure-strategy Nash equilibrium as long as x∗
1, x

∗
2 ≥ 0.

Observe that the headstarts defined by the tie-breaking rule q act as a direct substitute for
the effort exerted by them and the total equilibrium effort is independent of the choice of q.
The next lemma illustrates how the tie-breaking rule matters in the case where r = 0.5.

10Observe that a tie-breaking rule essentially defines additive head-starts q and 1− q in the Blavatskyy [5]
model. While previous work has studied the problem of finding optimal head-starts (Franke et al. [15], Fu
and Wu [16], Li et al. [24]), our problem of finding the optimal tie-breaking rule is different in that the
head-starts must add up to some constant.
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Lemma 6. Suppose the contest C is such that pi(x1, x2) =

√
xi√

xi +
√
xj + 1

, c(x) = x and

V1 = V2 = V .

• For any tie-breaking rule q ∈ [0, 1], the contest has a unique pure-strategy Nash equi-
librium defined by

x∗
1 =

1

4(2V + 1)

(
V − (

√
2V + 1− 1)q

)2

and

x∗
2 =

1

4(2V + 1)

(
V − (

√
2V + 1− 1)(1− q)

)2

.

• The total effort x∗
1+x∗

2 is convex in q ∈ [0, 1] with a minimum at q = 0.5 and maximum
at q = 0 and q = 1.

Even though the agents are identical, a designer who cares about maximizing effort is
better off biasing the contest in favor of one of the agents by committing to breaking ties in
its favor. Note that this is in contrast to ratio-form and difference-form contests where we
saw that with identical agents, the choice of tie-breaking rule has no effect on effort.

5.2 Random tie-breaking rules

As we have discussed, there are many situations where a designer would want to bias the
contest in favor of one of the players, even when they are ex-ante identical (as in Lemma 6).
But designing such a biased contest may be controversial or even infeasible if the designer is
not aware of the relative strengths of the two players. In such situations, the designer may
still be able to introduce bias into the contest while being fair ex-ante. For example, instead
of arbitrarily committing to breaking ties in favor of one of the players, it can publicly toss
a fair coin before the contest begins to pre-determine a winner in case the contest ends in
a tie11. This corresponds to a random tie-breaking rule in which the tie-breaking rule q is 0
or 1 with equal probability. Note that this is different from the tie-breaking rule q = 0.5 in
which case a fair coin is tossed to determine the winner after the contest has ended in a tie.

More generally, a random tie-breaking rule is defined by a random variableQ with support
in [0, 1] and we say that the rule is unbiased if E[Q] = 0.5. The timing of the contest with
random tie-breaking rules is as follows:

1. The contest designer chooses a distribution for random variable Q with support in
[0, 1]. This is the random tie-breaking rule and is known to all participants.

2. The value of Q is realized and publicly revealed. This is the tie-breaking rule q ∈ [0, 1].

11Many sports have coin tosses before the contest begins which may introduce some bias. For example,
in cricket, a coin is tossed before the match begins and the winner of the toss gets to choose whether they
want to bat or bowl first. There is some evidence that winning the toss provides a small, but significant
improvement to a team’s chances of winning.

11

https://en.wikipedia.org/wiki/Toss_(cricket)


3. Agents decide their effort levels.

4. The contest outcome is revealed and in case of a tie, player 1 is chosen as winner with
probability q and player 2 is chosen as winner with probability 1− q.

Next, we will discuss the design of random unbiased tie-breaking rules. More precisely,
we will consider the problem of choosing a random tie-breaking rule Q to maximize expected
total effort E[x1(Q)+x2(Q)] under the constraint that the rule is unbiased so that E[Q] = 0.5.

First, for ratio-form contests, we obtain the following as a corollary of Theorem 1.

Corollary 1. In a ratio-form contest satisfying Assumptions 1 and 2, any random unbiased
tie-breaking rule leads to the same expected total effort.

This follows from the fact that the total equilibrium effort is linear in q.
For the difference-form contests, we identify a sufficient condition under which breaking

ties by tossing a fair coin before the contest would be optimal.

Lemma 7. Consider a difference-form contest satisfying Assumptions 3 and 4. If V1 > V2

and p′′0(θ) < 0 for all θ ∈ [0,
√
2V1], the total effort is convex in q and the optimal unbiased

random tie-breaking rule chooses Q = 0 and Q = 1 with equal probability.

We note that when V1 is small enough, the assumption p′′0(θ) < 0 for all θ ∈ [0,
√
2V1] is

satisfied for the difference-form contest success functions considered in Lemmas 3 and 4.
Finally, for concave contests with square-root impact function and identical agents, it

follows from Lemma 6 that breaking ties in a fair way before the contest maximizes effort
among all random unbiased tie-breaking rules. Thus, a designer may be better off pre-
determining the winner in case of a tie by tossing a fair coin before the contest begins as
compared to the traditional practice of tossing a fair coin after the contest ends.

6 Conclusion

We study two-player contests with the possibility of ties under both ratio-form and difference-
form contest success functions. In these contests, we study the effect different tie-breaking
rules have on the effort exerted by the players. When players are heterogeneous, we find
that the total effort decreases as the probability that ties are broken in favor of the stronger
agent increases. Thus, an effort-maximizing designer would prefer to commit to breaking
ties in favor of the weaker agent. The result lends further support to the encouraging effect
of leveling the playing the field on effort in contests with heterogeneous agents.

With symmetric agents, we find that the equilibrium is generally symmetric and does
not depend on the choice of tie-breaking rule in the case of ratio-form and difference-form
contests. The problem is more interesting for concave contests in which we make some
parametric assumptions and find that an effort-maximizing designer would prefer to pre-
determine the winner in case of a tie by tossing a fair coin before the contest begins as
compared to the standard practice of breaking ties after the contest ends. We believe that
the study of tie-breaking rules for concave contests and contests with more than two agents
provide interesting directions for future research.
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[8] Chowdhury, S. M., P. Esteve-González, and A. Mukherjee (2023): “Het-
erogeneity, leveling the playing field, and affirmative action in contests,” Southern Eco-
nomic Journal, 89, 924–974. 2, 3

[9] Cohen, C. and A. Sela (2007): “Contests with ties,” The BE Journal of Theoretical
Economics, 7. 3

[10] Corchón, L. C. and M. Serena (2018): “Contest theory,” in Handbook of Game
Theory and Industrial Organization, Volume II, Edward Elgar Publishing, 125–146. 2

[11] Deng, S., X. Wang, and Z. Wu (2018): “Incentives in lottery contests with draws,”
Economics Letters, 163, 1–5. 2

[12] Drugov, M. and D. Ryvkin (2017): “Biased contests for symmetric players,” Games
and Economic Behavior, 103, 116–144.

[13] Eden, M. et al. (2006): “Optimal ties in contests,” Tech. rep. 3

[14] Ewerhart, C. (2017): “Revenue ranking of optimally biased contests: The case of
two players,” Economics Letters, 157, 167–170. 2

[15] Franke, J., W. Leininger, and C. Wasser (2018): “Optimal favoritism in all-pay
auctions and lottery contests,” European Economic Review, 104, 22–37. 3, 10

13



[16] Fu, Q. and Z. Wu (2020): “On the optimal design of biased contests,” Theoretical
Economics, 15, 1435–1470. 2, 3, 10, 24

[17] Garfinkel, M. R. and S. Skaperdas (2007): “Economics of conflict: An overview,”
Handbook of defense economics, 2, 649–709. 2

[18] Gelder, A., D. Kovenock, and B. Roberson (2019): “All-pay auctions with
ties,” Economic Theory, 1–49. 3

[19] Hirshleifer, J. (1989): “Conflict and rent-seeking success functions: Ratio vs. differ-
ence models of relative success,” Public choice, 63, 101–112. 2, 9
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A Proofs for Section 3 (Ratio-form contest success func-

tions)

Theorem 1. Consider a ratio-form contest satisfying Assumption 1. The contest has a
unique pure-strategy Nash equilibrium defined by

x∗
1 = V1βz

′
q(β) and x∗

2 = V2βz
′
q(β),

where β = V1

V2
≥ 1.

Proof. In a ratio-form contest C = (V1, V2, p1(), p2(), q, c()), there exist functions p and p0 so
that we can rewrite players payoff under profile x1, x2 as

Π1 = V1zq(θ)− x1 and Π2 = V2(1− zq(θ))− x2

where θ =
x1

x2

and zq(θ) = p(θ) + qp0(θ).

Since the prize is valued positively by both players and the probability of winning the
contest with xi = 0, xj > 0 is 0 for player i and 1 for player j, any pure-strategy Nash
equilibrium involves positive effort levels by both players.

Now, observe that

∂Π1

∂x1

=
V1

x2

z′q(θ)− 1 and
∂Π2

∂x2

=
x1V2

x2
2

z′q(θ)− 1

and

∂2Π1

∂x2
1

=
V1

x2
2

(z′′q (θ)) < 0 and
∂2Π2

∂x2
2

= −x1V2

x3
2

(
2z′q(θ) + θz′′q (θ)

)
< 0.

From Assumption 1, Πi is concave in xi for any xj. Since any pure-strategy Nash equi-
librium must satisfy the first-order conditions

V1z
′
q(θ) = x2 and x1V2z

′
q(θ) = x2

2,

concavity of payoffs implies that the second-order conditions are satisfied at any solution to
the first-order conditions. Observe that any solution to the two first-order conditions must
satisfy

x1

x2

=
V1

V2

= β.

But this condition uniquely pins down the solution to the first-order conditions:

x∗
1 = V1βz

′
q(β) and x∗

2 = V2βz
′
q(β).

Theorem 2. Consider a ratio-form contest satisfying Assumptions 1 and 2.
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• If V1 > V2, x
∗
1(q)+x∗

2(q) is decreasing in q and so the optimal tie-breaking rule is q = 0.

• If V1 = V2, x
∗
1(q) + x∗

2(q) is independent of q.

Proof. From Theorem 1, the total effort in equilibrium is given by

R(q) = (V1 + V2)β(p
′(β) + qp′0(β)).

Observe that the total effort is linear in q with the coefficient (V1 + V2)βp
′
0(β) and the

sign of the coefficient is determined by p′0(β). When β = V1

V2
> 1 Assumption 2 implies

that p′0(β) < 0 and it follows that the the total effort is decreasing in q. So the optimal
tie-breaking rule breaks ties in favor of the weaker player (q = 0).

Similarly, when β = V1

V2
= 1 Assumption 2 implies that p′0(β) = 0 and it follows that

the equilibrium effort, and thus, the total effort, is independent of q. So the choice of the
tie-breaking rule does not matter in this case.

Lemma 1. Suppose C is a ratio-form contest with pi(xi, xj) =
xrk
i

(xr
i+xr

j )
k where k ≥ 1. If

rk ≤ 1, then for any q ∈ [0, 1], the contest has a unique pure-strategy Nash equilibrium
defined by

x∗
1 = V1rk

βrk + q(βr − βrk)

(1 + βr)k+1
and x∗

2 = V2rk
βrk + q(βr − βrk)

(1 + βr)k+1
,

where β = V1

V2
.

Proof. To prove the result, we define the functions p(θ), p0(θ) and show that they satisfy
Assumptions 1, 2 when rk ≤ 1 with r ≤ 1, k ≥ 1.

For the given contest, we can define the functions

p(θ) =
θrk

(1 + θr)k
, p0(θ) =

(1 + θr)k − 1− θrk

(1 + θr)k

so that

zq(θ) =
θrk + q((1 + θr)k − 1− θrk)

(1 + θr)k
.

Let us first identify conditions under which Assumption 1 is satisfied.
To do so, we have that

z′q(θ) =
(1 + θr)k(rkθrk−1(1− q) + qkr(1 + θr)k−1θr−1)− (θrk + q((1 + θr)k − 1− θrk))(kr(1 + θr)k−1θr−1)

(1 + θr)2k

= krθr−1 (θ
rk−r(1− q)) + q

(1 + θr)k+1

= kr
θrk−1(1− q) + qθr−1

(1 + θr)k+1
.
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Also,

z′′q (θ) = krθr−2 q(r − 1) + θrk−r(rk − 1)(1− q)− θrk(1 + r)(1− q)− θrq(1 + kr)

(1 + θr)k+2

= krθr−2 q(r − 1− θr(1 + kr)) + (1− q)θrk−r(rk − 1− θr(1 + r))

(1 + θr)k+2
.

Lastly,

2z′q(θ) + θz′′q (θ) = krθr−1 q(r + 1 + θr(1− kr)) + (1− q)θrk−r(rk + 1 + θr(1− r))

(1 + θr)k+2
.

From the above expressions, we have that z′q(θ) > 0 for all θ > 0. The condition rk ≤ 1
with r ≤ 1 and k ≥ 1 is sufficient for both z′′q (θ) < 0 and 2z′q(θ)+ θz′′q (θ) > 0. Thus, we have
that if rk ≤ 1, Assumption 1 is satisfied.

Observe that

p′0(θ) = kr
θr − θrk

θ(1 + θr)k+1
,

which is ≥ 0 for θ ≤ 1 and ≤ 0 for θ ≥ 1 since k ≥ 1. Thus, Assumption 2 is also satisfied.

Lemma 2. Suppose C is a ratio-form contest with pi(xi, xj) =
xr
i

xr
i+kxr

j
where k ≥ 1. If r ≤ 1,

then for any q ∈ [0, 1], the contest has a unique pure-strategy Nash equilibrium defined by

x∗
1 = V1rkβ

r

(
1

(βr + k)2
+ q

(
1

(1 + kβr)2
− 1

(βr + k)2

))
and

x∗
2 = V2rkβ

r

(
1

(βr + k)2
+ q

(
1

(1 + kβr)2
− 1

(βr + k)2

))
,

where β = V1

V2
.

Proof. To prove the result, we define the functions p(θ), p0(θ) and show that they satisfy
Assumptions 1, 2 when r ≤ 1 . We further show that the condition in Theorem 2 is also
satisfied when r ≤ 1 which implies the result.

For the given contest, we can define the functions

p(θ) =
θr

θr + k
, p0(θ) = 1− θr

θr + k
− 1

kθr + 1

so that

zq(θ) =
θr(1 + kθr + q(k2 − 1))

(1 + kθr)(θr + k)
.
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Let us first identify conditions under which Assumption 1 is satisfied.
To do so, we have that

z′q(θ) = krθr−1 (1− q)(1 + kθr)2 + q(θr + k)2

(1 + kθr)2(θr + k)2
.

Also,

z′′q (θ) = −krθr−2

(
2rθr

(
1− q

(θr + k)3
+

qk

(1 + kθ2)3

)
+ (1− r)

(
1− q

(θr + k)2
+

q

(1 + kθ2)2

))
.

Lastly,

2z′q(θ) + θz′′q (θ) = krθr−1

(
(1− q)

(θr + k)2

(
1 + r − 2rθr

θr + k

)
+

q

(1 + kθr)2

(
1 + r − 2rkθr

1 + kθr

))
.

From the above expressions, we have that z′q(θ) > 0 for all θ > 0. The condition r ≤ 1
is sufficient for both z′′q (θ) < 0 and 2z′q(θ) + θz′′q (θ) > 0. Thus, we have that if r ≤ 1,
Assumption 1 is satisfied.

Observe that

p′0(θ) = krθr−1 (θ
r + k)2 − (1 + kθr)2

(1 + kθr)2(θr + k)2

= krθr−1 (θ
r + k + 1 + kθr)(θr + k − 1− kθr)

(1 + kθr)2(θr + k)2

= krθr−1 (θ
r + k + 1 + kθr)(k − 1)(1− θr)

(1 + kθr)2(θr + k)2
,

which is ≥ 0 for θ ≤ 1 and ≤ 0 for θ ≥ 1 since k ≥ 1. Thus, Assumption 2 is also satisfied.

B Proofs for Section 4 (Difference-form contest success

functions)

Theorem 3. Consider a difference-form contest satisfying Assumption 3. The contest has
a unique pure-strategy Nash equilibrium defined by

x∗
1 = V1z

′
q(β(q)) and x∗

2 = V2z
′
q(β(q)),

where β(q) is the unique solution to the equation θ = (V1 − V2)z
′
q(θ).
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Proof. In a difference-form contest C = (V1, V2, p1(), p2(), q, c()), there exist functions p and
p0 so that we can rewrite players payoff under profile x1, x2 as

Π1 = V1zq(θ)−
x2
1

2
and Π2 = V2(1− zq(θ))−

x2
2

2

where θ = x1 − x2 and zq(θ) = p(θ) + qp0(θ).
Now, observe that

∂Π1

∂x1

= V1z
′
q(θ)− x1 and

∂Π2

∂x2

= V2z
′
q(θ)− x2

and

∂2Π1

∂x2
1

= V1(z
′′
q (θ))− 1 < 0 and

∂2Π2

∂x2
2

= −V2(z
′′
q (θ))− 1 < 0.

From Assumption 3, Πi is concave in xi for any xj. Since any pure-strategy Nash equi-
librium must satisfy the first-order conditions

V1z
′
q(θ) = x1 and V2z

′
q(θ) = x2,

concavity of payoffs implies that the second-order conditions for maximization are satisfied at
any solution to the first-order conditions. Now any solution to the two first-order conditions
must satisfy the following:

x1

x2

=
V1

V2

and
x1 − x2 = (V1 − V2)z

′
q(x1 − x2).

Consider the equation θ − (V1 − V2)z
′
q(θ) = 0. The derivative of the left hand side is

1 − (V1 − V2)z
′′
q (θ) which is ≥ 0 as long as z′′q (θ) ≤ 1

V1−V2
. From Assumption 3, z′′q (θ) ≤ 1

V1

which implies z′′q (θ) ≤ 1
V1−V2

. Thus, the left hand side is monotone increasing in θ. Also
observe that at θ = 0, the left hand side is −(V1 − V2)z

′
q(0) < 0. Thus, there is a unique

solution to the equation θ − (V1 − V2)z
′
q(θ) = 0. Let β(q) denote this unique solution to

the equation θ − (V1 − V2)z
′
q(θ) = 0. The uniqueness of β(q) implies that there is a unique

solution to the first-order conditions and it takes the form

x∗
1 =

β(q)V1

V1 − V2

and x∗
2 =

β(q)V2

V1 − V2

.

Equivalently, we can write it as

x∗
1 = V1z

′
q(β(q)) and x∗

2 = V2z
′
q(β(q)).

where β(q) is the unique solution to the equation θ = (V1 − V2)z
′
q(θ).
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Theorem 4. Consider a difference-form contest satisfying Assumptions 3 and 4.

• If V1 > V2, x
∗
1(q)+x∗

2(q) is decreasing in q and so the optimal tie-breaking rule is q = 0.

• If V1 = V2, x
∗
1(q) + x∗

2(q) is independent of q.

Proof. From Theorem 3, the total effort in the unique pure-strategy Nash equilibrium is
given by

R(q) = (V1 + V2)z
′
q(β(q)),

where β(q) is the unique solution to the equation θ = (V1 − V2)z
′
q(θ).

Consider the case where V1 > V2. In this case, we have that

R(q) = (V1 + V2)z
′
q(β(q)) =

V1 + V2

V1 − V2

β(q)

from the equation defining β(q). Thus, R′(q) =
V1 + V2

V1 − V2

β′(q) which implies that the total

equilibrium effort R(q) goes in the same direction as the difference in equilibrium effort β(q)
as we change q. From the characterizing equation, we know that

β′(q) = (V1 − V2) (p
′′(β(q))β′(q) + p′0(β(q)) + qp′′0(β(q))β

′(q)) ,

which implies

β′(q) (1− (V1 − V2) (p
′′(β(q)) + qp′′0(β(q)))) = (V1 − V2)p

′
0(β(q)).

Given that z′′q (θ) ∈ [− 1
V1
, 1
V1
] from Assumption 3, we know that β′(q) has the same sign

as p′0(β(q)). We already know β(q) > 0 and therefore, from Assumption 4, we get that
β′(q) < 0. Therefore, the total equilibrium effort R(q) is decreasing in q and it follows that
the optimal tie breaking rule breaks ties in favor of the weaker agent by setting q = 0.

When V1 = V2, β(q) = 0 for all q ∈ [0, 1] and thus, R(q) = (V1 + V2)(p
′(0) + qp′0(0)). But

we know from Assumption 4 that p′0(0) = 0 and thus, we get that the total effort equals
R(q) = (V1 + V2)p

′(0) for any q ∈ [0, 1]. Thus, with symmetric agents, the choice of the
tie-breaking rule does not matter for equilibrium, and thus, total effort.

Lemma 3. Suppose C is a difference-form contest with pi(xi, xj) =
(

exp(xi)
exp(xi)+exp(x−i)

)k

with

k ≥ 1. There exist some V̄ > 0 such that if V̄ ≥ V1 ≥ V2 > 0, then for any q ∈ [0, 1], the
contest has a unique pure-strategy Nash equilibrium defined by

x∗
1 = V1z

′
q(β(q)) and x∗

2 = V2z
′
q(β(q)),

where β(q) is the unique solution to the equation θ = (V1 − V2)z
′
q(θ).

21



Proof. To prove the result, we define the functions p(θ), p0(θ) and show that they satisfy
Assumptions 3, 4 if V1 is small enough. The result then follows from Theorems 3 and 4.

For the given contest, we can define the functions

p(θ) =
ekθ

(1 + eθ)k
, p0(θ) =

(1 + eθ)k − 1− ekθ

(1 + eθ)k

so that

zq(θ) = (1− q)
ekθ

(1 + eθ)k
+ q

(
1− 1

(1 + eθ)k

)
.

Let us first identify conditions under which Assumption 3 is satisfied.
To do so, we have that

z′q(θ) =
keθ

(1 + eθ)k+1

(
(1− q)e(k−1)θ + q

)
.

Also,

z′′q (θ) =
keθ

(1 + eθ)k+2

(
(1− q)e(k−1)θ(k − eθ) + q(1− keθ)

)
.

Observe that z′q(θ) > 0. Letting t = eθ, we get

z′′q (θ) =
kt

(1 + t)k+2

(
(1− q)t(k−1)(k − t) + q(1− kt)

)
.

Since limt→∞ z′′q (θ) = 0 and limt→0 z
′′
q (θ) = 0, there exists some bounds m,M such that

m ≤ z′′q (θ) ≤ M for all θ ∈ R. Thus, if we take V1 small enough so that −1
V1

≤ m ≤ M ≤ 1
V1
,

Assumption 3 will be satisfied.
We also note that this contest success function satisfies Assumption 4 as

p′0(θ) =
keθ

(1 + eθ)k+1
(1− e(k−1)θ),

which is > 0 for θ < 0 and < 0 for θ > 0. Thus, Theorem 4 applies.

Lemma 4. Suppose C is a difference-form contest with pi(xi, xj) = exp(xi)
exp(xi)+k exp(x−i)

with

k ≥ 1. There exist some V̄ > 0 such that if V̄ ≥ V1 ≥ V2 > 0, then for any q ∈ [0, 1], the
contest has a unique pure-strategy Nash equilibrium defined by

x∗
1 = V1z

′
q(β(q)) and x∗

2 = V2z
′
q(β(q)),

where β(q) is the unique solution to the equation θ = (V1 − V2)z
′
q(θ).
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Proof. To prove the result, we define the functions p(θ), p0(θ) and show that they satisfy
Assumptions 3, 4 if V1 is small enough. The result then follows from Theorems 3 and 4.

For the given contest, we can define the functions

p(θ) =
eθ

k + eθ
, p0(θ) = 1− eθ

k + eθ
− 1

keθ + 1

so that

zq(θ) = (1− q)
eθ

k + eθ
+ q

keθ

1 + keθ
.

Let us first identify conditions under which Assumption 3 is satisfied.
To do so, we have that

z′q(θ) = keθ
(

1− q

(k + eθ)2
+

q

(1 + keθ)2

)
.

Also,

z′′q (θ) = keθ
(
(1− q)(k2 − e2θ)

(k + eθ)4
+

q(1− k2e2θ)

(1 + keθ)4

)
.

Again, we have that z′q(θ) > 0 and also limθ→∞ z′′q (θ) = 0 and limθ→−∞ z′′q (θ) = 0 which
implies z′′q (θ) is bounded between some M and m. Thus, if we take V1 small enough so that
−1
V1

≤ m ≤ M ≤ 1
V1
, Assumption 3 will be satisfied.

We also note that this contest success function satisfies Assumption 4 as

p′0(θ) = keθ
(

1

(1 + keθ)2
− 1

(k + eθ)2

)
,

which is > 0 for θ < 0 and < 0 for θ > 0. Thus, Theorem 4 applies.

C Proofs for Section 5 (Discussion)

Lemma 5. Suppose the contest C satisfies Assumption 5. Then, for any increasing and
convex cost function c with c(0) = 0 and any tie-breaking rule q ∈ [0, 1], the contest admits
a unique pure-strategy Nash equilibrium.

Proof. Let f1, f2 denote the increasing and concave impact functions that define the contest
success functions p1, p2, p0. For any q ∈ [0, 1], we can write the probability that player i
eventually wins the contest as

Pi =
gi(xi)

g1(x1) + g2(x2)
,

where
g1(x1) = f1(x1) + qs and g2(x2) = f2(x2) + (1− q)s.
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Observe that gi is also twice-differentiable, strictly increasing and concave. Thus, it follows
from Theorem 1 of Fu and Wu [16] that there exists a unique pure-strategy Nash equilibrium
in this game.

Lemma 6. Suppose the contest C is such that pi(x1, x2) =

√
xi√

xi +
√
xj + 1

, c(x) = x and

V1 = V2 = V .

• For any tie-breaking rule q ∈ [0, 1], the contest has a unique pure-strategy Nash equi-
librium defined by

x∗
1 =

1

4(2V + 1)

(
V − (

√
2V + 1− 1)q

)2

and

x∗
2 =

1

4(2V + 1)

(
V − (

√
2V + 1− 1)(1− q)

)2

.

• The total effort x∗
1+x∗

2 is convex in q ∈ [0, 1] with a minimum at q = 0.5 and maximum
at q = 0 and q = 1.

Proof. For the general case of r < 1 and V1 ≥ V2, we get from the first-order conditions that
the equilibrium effort levels x∗

1 and x∗
2 satisfies the equations

V2x1

(
1 +

q

xr
1

)
= V1x2

(
1 +

1− q

xr
2

)
and

V2r (x
r
1 + q) = x1−r

2 (xr
1 + xr

2 + 1)2 .

In this special case where r = 0.5 with V1 = V2 = V , the equations simplify to:

√
x1 (

√
x1 + q) =

√
x2 (

√
x2 + 1− q) V (

√
x1 + q) = 2

√
x2 (

√
x1 +

√
x2 + 1)

2

We can solve the two equations to get the unique pure strategy Nash equilibrium as in
the lemma.

Let us verify that the x∗
1 and x∗

2 satisfy these two equations. To verify, let a = V and

b =
√
2V + 1 so that x∗

1 =
(

1
2b
(a− (b− 1)q)

)2
and x∗

2 =
(

1
2b
(a− (b− 1)(1− q))

)2
. Then we

have that √
x∗
1 =

1

2b
(a− (b− 1)q)

√
x∗
1 + q =

1

2b
(a+ (b+ 1)q)

and √
x∗
2 =

1

2b
(a− (b− 1)(1− q))

√
x∗
2 + 1− q =

1

2b
(a+ (b+ 1)(1− q)) .

Using these, together we the fact that 2a = b2 − 1, we can verify that x∗
1 and x∗

2 solve the
two first order conditions.
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For the second part, observe that the total effort takes the form x∗
1 + x∗

2 = (c − dq)2 +
(c − d(1 − q))2 for appropriately defined constants c and d that depend only on V . Upon
simplifying, the total effort equals 2c2 + d2 − 2cd+ 2d2q(q − 1) which is clearly convex in q
and has a minimum at q = 0.5 and maximum at q = 0, 1.

Lemma 7. Consider a difference-form contest satisfying Assumptions 3 and 4. If V1 > V2

and p′′0(θ) < 0 for all θ ∈ [0,
√
2V1], the total effort is convex in q and the optimal unbiased

random tie-breaking rule chooses Q = 0 and Q = 1 with equal probability.

Proof. From Theorem 3, the total effort in the unique pure-strategy Nash equilibrium is
given by

R(q) = (V1 + V2)z
′
q(β(q)) =

V1 + V2

V1 − V2

β(q),

where β(q) is the unique solution to the equation θ = (V1 − V2)z
′
q(θ).

Thus,

R′′(q) = (V1 + V2)z
′
q(β(q)) =

V1 + V2

V1 − V2

β′′(q).

Note that the solution β(q) of an implicit equation F (θ, q) = 0 is convex iff

∂F

∂q

∂2F

∂θ∂q
− ∂F

∂θ

∂2F

∂q2
≥ 0.

In our case, β(q) is the solution to the equation (V1 − V2) (p
′(θ) + qp′0(θ))− θ = 0.

Then, β(q) is convex if and only if

(V1 − V2)
2p′0(θ)p

′′
0(θ) ≥ 0.

We know that for V1 > V2, θ > 0 and so p′0(θ) < 0. Therefore, we need p′′0(θ) < 0 for
β(q), and thus, R(q) to be convex. Observe also that player 1’s equilibrium effort x∗

1 must

be such that V1 − x2
1

2
≥ 0 ⇐⇒ x∗

1 ≤
√
2V1. Since x∗

2 ≥ 0, it follows that β(q) ≤
√
2V1 for

any q. Thus, if we have p′′0(θ) ≤ 0 for θ ∈ [0,
√
2V1], we have that the total effort is convex

in q. It follows from convexity then that the optimal random tie-breaking rule in the class
of unbiased rules breaks ties in fair manner before the contest.
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