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Abstract

We study the design of effort-maximizing grading schemes between agents with

private abilities. Assuming agents derive value from the information their grade re-

veals about their ability, we find that more informative grading schemes induce more

competitive contests. In the contest framework, we investigate the effect of manip-

ulating individual prizes and increasing competition on expected effort, identifying

conditions on ability distributions and cost functions under which these transforma-

tions may encourage or discourage effort. Our results suggest that more informative

grading schemes encourage effort when agents of moderate ability are highly likely, and

discourage effort when such agents are unlikely.

1 Introduction

Contests are situations in which agents compete by investing costly resources to win valuable

prizes. In many such situations, the prizes are not monetary and instead, take the form of

grades which may be valuable to the agents because of the information they reveal about
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their private abilities. Some examples include classroom settings or massive open online

courses, where students compete for better grades which they can use to signal their produc-

tivity to the market and get potentially higher wages. In such environments, the designer can

choose how much information to reveal about the performance of the participating agents

with their choice of a grading scheme, which might also influence the effort that the agents

exert towards getting better grades. In this paper, we study how the informativeness of

grading schemes influences the effort exerted by agents and identify the grading schemes

that maximize expected effort.

We study this problem in a model where agents have private information about their

abilities, measured by their marginal cost of effort. The designer, who can rank agents in

terms of the effort they exert, commits to a grading scheme which describes the extent to

which different ranks will be pooled together under a common grade. The grade obtained by

an agent serves as a signal about their private ability, and the resulting posterior amounts to

a wage offer in the market. Interpreting this wage offer as a prize, one corresponding to each

rank, every grading scheme thus induces a unique contest in the classical sense between the

agents. Moreover, under this modeling of grading schemes as signaling instruments, we show

that more informative grading schemes induce more competitive contests, and in general,

the aggregate sum of prizes in contests induced by grading schemes is constant. Thus, the

question of how informativeness of grading schemes influences effort reduces to one of how

competition influences effort in contests, and the design problem reduces to one of feasibly

distributing a fixed budget among the different prizes.

This motivates our investigation of how manipulating prizes and increasing competition

influences expected effort in contests where agents have private abilities. In this environment

with linear costs, Moldovanu and Sela [21] show that increasing competition by transferring

value to the first prize always encourages effort, and consequently, a budget-constrained de-

signer would optimally allocate the entire budget to the first prize (if feasible) to maximize

expected effort. While this optimality of the most competitive winner-takes-all contest sug-

gests that increasing competition might generally encourage effort, we show that this is not

necessarily the case. More precisely, we identify sufficient conditions on ability distributions

under which increasing any intermediate prize, or increasing competition by transferring

value between intermediate prizes, may encourage or discourage effort. These conditions

suggest that the effect of increasing any intermediate prize is determined by the relative
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likelihood of productive and unproductive agents, while the effect of increasing competition

is determined by the relative likelihood of moderately productive and extreme (high or low)

productivity agents.1

For general costs, we show that the effect these transformations have on equilibrium

effort can sometimes be informed by their effect on equilibrium effort under linear costs.

Intuitively, with general costs, one can equivalently model the contest as one in which agents

directly choose effort costs instead of effort, and thus, the effect these transformations have

on effort under linear costs can more generally be interpreted as the effect these transfor-

mations have on effort costs under arbitrary cost functions. This effect on effort cost has

implications for the effect on effort itself when the cost function is concave or convex. In

particular, we show that increasing intermediate prizes encourages effort under convex costs

if it increases effort costs (encourages effort under linear costs), and it discourages effort

under concave costs if it decreases effort costs (discourages effort under linear costs). For the

effect of increasing competition, we are able to similarly infer the effect on effort from those

on effort costs, under the additional condition that the transformation encourage effort from

the most productive agent.

We use these results to solve for effort-maximizing grading schemes. As noted above, the

problem is equivalent to distributing a fixed a budget across different prizes, but the restric-

tion to distributions feasible under grading schemes imply bounds on the values that can be

allocated to various prizes, and in particular, renders the winner-takes-all contest infeasible.

Under linear costs, while the effort-maximizing grading rule still allocates the maximum

possible value to the first prize (by uniquely identifying the best-performing agent), the op-

timal distribution of the left-over budget among the remaining prizes (the full structure of

the grading scheme) depends on how increasing competition effects effort, and thus, on the

likelihood of moderately productive agents. If moderately productive agents are likely, com-

petition encourages effort and the optimal grading scheme is highly informative, revealing

exactly the rank obtained by some of the best-performing agents while pooling the remaining

bottom ranked agents together. And if moderately productive agents are unlikely, compe-

tition discourages effort and the optimal grading scheme is relatively coarse as it uniquely

1The case where the marginal costs of effort are uniformly distributed on [0, 1] turns out to be a useful

reference point. With linear costs, the expected effort is simply the difference of the first and the last prize,

and thus, the transformations involving intermediate prizes actually have no effect on expected effort.
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identifies the best-performing agent, but pools all the remaining agents with at most two

more different grades.

Literature review

There is a vast literature studying the classical contest design problem of distributing a fixed

budget across various prizes. In models where agents have private abilities, which is the

focus of this paper, Moldovanu and Sela [21] show that the winner-takes-all contest is op-

timal under linear and concave costs, while Zhang [33] identifies sufficient conditions under

which it is optimal with convex costs as well. In comparison, in the complete information

environment, Barut and Kovenock [2] establish an invariance result under linear costs, while

Fang, Noe, and Strack [11] show more generally that increasing competition encourages ef-

fort under concave costs, while discouraging effort under convex costs.2 Baranski and Goel

[1] present a unifying approach by studying finite type-space domains, establishing the strict

optimality of winner-takes-all contest under linear and concave costs even with the slightest

uncertainty about abilities. Olszewski and Siegel [24, 25] study large contests, and show that

it is generally optimal to award multiple prizes of descending sizes under convex costs.3 Our

paper investigates the more general problem of how increasing competition influences effort

when agents have private information about their abilities, showing in particular that the

effects are a bit more nuanced in comparison to the complete information case.

There is also some related literature studying how grading schemes influence effort. In

closely related work, Moldovanu, Sela, and Shi [23] and Immorlica, Stoddard, and Syrgkanis

[14] also show that effort-maximizing grading schemes may involve coarse or fine partitioning

depending upon the underlying distribution of abilities. In particular, Moldovanu, Sela, and

Shi [23] study a model similar to ours with relative grading schemes (grades can only de-

pend on rank), but assume linear costs and use a very different approach leading to different

conditions on ability distributions. Immorlica, Stoddard, and Syrgkanis [14] also assume

2Glazer and Hassin [13] solve the budget distribution problem in some special cases of private ability and

complete information environments, highlighting the distinct nature of the optimal contests in them.
3The literature has also explored some variants of the design problem, investigating the role of general

architectures (Moldovanu and Sela [22]), allocation rules (Letina, Liu, and Netzer [17]), negative prizes

(Liu, Lu, Wang, and Zhang [19]), costly entry (Liu and Lu [18]), and homogeneous prizes (Liu and Lu

[20]). Surveys of literature in contest theory can be found in Sisak [31], Corchón [9], Vojnović [32], Konrad

[15], Chowdhury, Esteve-González, and Mukherjee [8], Fu and Wu [12], Beviá and Corchón [3].
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linear costs, and allow for absolute grading schemes (grades can depend on absolute effort),

showing that the optimal grading scheme generally reveals the exact ranks of agents above a

certain effort threshold. In recent work, Krishna, Lychagin, Olszewski, Siegel, and Tergiman

[16] take the agents’ perspective, and illustrate how pooling ranks together can be Pareto

improving for students in contests for college admissions. In a complete information setting,

Dubey and Geanakoplos [10] find that absolute grading schemes dominate relative grad-

ing schemes for enticing effort from students.4 Our paper contributes to this literature by

studying the design of relative grading schemes as information disclosure policies, and our

approach generates insights about the more fundamental question of how more informative

grading schemes influence effort in general environments.

The paper proceeds as follows. In Section 2, we present the model of a contest and

note some useful facts. Section 3 characterizes the symmetric Bayes-Nash equilibrium and

analyzes the effect of increasing prizes and competition on expected effort. In Section 4,

we introduce and discuss our application to the design of grading schemes as information

disclosure policies. Section 5 concludes. All proofs are relegated to the appendix.

2 Model

There is a set N = {1, 2, . . . , n} of risk-neutral agents. Each agent j ∈ N has a private

type θj (which captures its marginal cost of effort), drawn independently from type-space

Θ = [θ, θ] according to distribution F : Θ → [0, 1] so that Pr[θj ≤ θ] = F (θ). In contrast to

previous literature, we allow for the possibility that θ = 0, but assume that in such a case,

extremely productive agents are not too likely.

Assumption 1. The distribution of abilities F : [θ, θ] → [0, 1] is such that

1. it admits a differentiable density function f(θ) = F ′(θ) for θ ∈ (θ, θ),

2. limt→0 th(t) = 0, where h(t) = t
F−1(t)

for t ∈ (0, 1).

4Some other related work explores the design of absolute grading schemes in single-agent environments

(Rayo [29], Zubrickas [34], Rodina and Farragut [30], Onuchic and Ray [26]), and the structure of equilibrium

grading schemes in models of university competition (Popov and Bernhardt [28], Boleslavsky and Cotton

[4], Ostrovsky and Schwarz [27], Chan, Hao, and Suen [7]), offering rationales for the general trend towards

information suppression, grade inflation, and deteriorating grading standards in universities. Brownback [5]

and Butcher, McEwan, and Weerapana [6] study empirically how grading schemes influence effort in the

classroom.
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Notice that if θ > 0, Assumption 1 only requires that F (.) is twice-differentiable, as the

second condition is trivially satisfied. When θ = 0, the second condition can be equivalently

written as limθ→0
F 2(θ)

θ
= 0, capturing the requirement that extremely productive agents are

somewhat unlikely. For instance, with Θ = [0, 1] and F (θ) = θp, F (.) satisfies Assumption 1

if and only if p > 1
2
.

There is a designer who designs a contest v = (v1, . . . , vn) with v1 ≥ v2 ≥ · · · ≥ vn. Given

the contest v, all agents simultaneously choose their effort. The agents are ranked according

to their effort and awarded the corresponding prizes, with ties broken uniformly at random.

If agent j ∈ N exerts effort xj ≥ 0 and wins prize vi, its payoff is

vi − θjc(xj),

where c : R+ → R+ is a strictly increasing and differentiable cost function with c(0) = 0 and

limx→∞ c(x) = ∞. We will let g = c−1.

Given F (.) and c(.), a contest v defines a Bayesian game between the n agents. We will

focus on the symmetric Bayes-Nash equilibrium of this contest game. This is a strategy pro-

file where all n agents use the same strategy Xv : Θ → R+ so that for any agent j ∈ N with

type θj, choosing effort Xv(θj) leads to a payoff at least as high as the payoff from choosing

any other effort level, given that all remaining n−1 agents are also using the strategy Xv(.).

From the designer’s perspective, we assume that it cares about maximizing expected

effort. Formally, the designer prefers a contest v over v′ if and only if E[Xv(θ)] ≥ E[Xv′(θ)],

where Xv(.) represents the symmetric Bayes-Nash equilibrium induced by contest v.

Notation and Facts

In our analysis, we make use of some notation and facts that we note here.

We denote by pi(t) the probability that a random variable Y ∼ Bin(n − 1, t) takes the

value i− 1. That is, for i ∈ {1, . . . , n},

pi(t) =

(
n− 1

i− 1

)
ti−1(1− t)n−i.

Note that pi(t) can be interpreted as the probability that an agent loses to exactly i − 1
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agents out of n−1 agents, and thus the probability that the agent wins prize i, when it loses

to any arbitrary agent with probability t. The following is a useful fact about pi(t).

Lemma 1. For any i ∈ {1, . . . , n} and k ∈ R such that i+ k > 1,∫ 1

0

tkp′i(t)dt = pi(1)− k

(
n− 1

i− 1

)
B(i+ k − 1, n− i+ 1)

where B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt represents the Beta function.

Some of our findings depend on the distribution of abilities F (.), and in particular, depend

on whether h(.) is monotone increasing or decreasing or if it is concave or convex. We note

here some conditions on F (.) which are potentially easier to verify and sufficient for h(.) to

have these properties.

Lemma 2. Suppose F : [θ, θ] → [0, 1] is a distribution that satisfies Assumption 1.

1. If f(θ) is increasing on (θ, θ), then h(t) is increasing on (0, 1).

2. If f(θ) is decreasing on (θ, θ) and θ = 0, then h(t) is decreasing on (0, 1).

3. f(θ)θ2

F 2(θ)
is decreasing on (θ, θ) ⇐⇒ h(t) is concave on (0, 1).

4. f(θ)θ2

F 2(θ)
is increasing on (θ, θ) and θ = 0 ⇐⇒ h(t) is convex on (0, 1).

Notice that if F (.) is uniform on Θ = [0, θ], then h(t) = 1
θ
for all t ∈ (0, 1), in which case

it satisfies all the above properties. Thus, h(.) captures properties of the ability distribution

relative to this benchmark uniform case, so that it is increasing if unproductive agents are

more likely, decreasing if productive agents are more likely, concave if moderately productive

agents are more likely, and convex if extreme (high or low) productivity agents are more likely.

Lastly, we note a key idea that we use repeatedly in our analysis.

Lemma 3. Suppose f1 : [a, b] → R is such that there exists c ∈ [a, b] so that f1(x) ≤ 0 for

x ≤ c and f1(x) ≥ 0 for x ≥ c. Then, for any increasing function f2 : [a, b] → R,∫ b

a

f1(x)f2(x)dx ≥ f2(c)

∫ b

a

f1(x)dx.

The claim clearly holds when f2(.) is a constant function. If f2(.) is increasing, it puts

greater weight to the region of f1(.) where it is positive as compared to where f1(.) is negative,

and therefore, the integral is greater in comparison to the case where the weight is uniform

over the entire region.
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3 Equilibrium

In this section, we study the equilibrium effort induced by different contests, with a focus

on understanding how manipulating different prizes and increasing competitiveness can in-

fluence expected equilibrium effort.

To begin, we note the symmetric Bayes-Nash equilibrium of the game induced by an

arbitrary contest v. In a similar setup but with θ > 0, Moldovanu and Sela [21] characterized

the equilibrium of the contest game, showing that more productive agents exert greater effort.

The same characterization extends to this case, where θ might possibly be 0.

Lemma 4. For any contest v = {v1, . . . , vn}, there is a unique symmetric Bayes-Nash

equilibrium and it is such that for any θ ∈ Θ,

Xv(θ) = g

(
n∑

i=1

vimi(θ)

)
,

where

mi(θ) = −
∫ 1

F (θ)

p′i(t)

F−1(t)
dt. (1)

Notice that by Leibniz rule,

∂Xv(θ)

∂θ
= g′

(
n∑

i=1

vimi(θ)

)(
n∑

i=1

vip
′
i(F (θ))

)
f(θ)

θ
.

Since
∑k

i=1 pi(t) is decreasing in t for all k ∈ {1, . . . , n}, and v1 ≥ v2 ≥ · · · ≥ vn, we get that∑n
i=1 vip

′
i(F (θ)) < 0. As g = c−1 is strictly increasing, it follows that Xv(θ) is indeed strictly

decreasing in θ, so that more productive agents exert greater effort.

From the characterization, one can verify that for any sequence of distributions F1, F2, . . . ,

converging pointwise to a distribution F , the corresponding sequence of equilibria also con-

verges to the equilibrium under F . This means that, for instance, the equilibrium under the

uniform distribution on Θ = [0, θ] is the limit of sequence of equilibria under uniform distri-

butions Fk on [θk, θ], where limk→∞ θk = 0. This provides a useful alternative interpretation

for equilibria in cases where θ = 0. More precisely, the equilibrium in such a case can serve

as a useful approximation to equilibrium in settings where θ is positive but small. When
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θ = 0, we will let Xv(0) = limθ→0Xv(θ), noting that this limit might be infinite.5

From this equilibrium characterization, the expected effort induced by any contest v is

E[Xv(θ)] = E

[
g

(
n∑

i=1

vimi(θ)

)]
.

3.1 Increasing prizes

In this subsection, we study the effect of manipulating individual prizes on expected equi-

librium effort. From above, the marginal effect of increasing value of any prize i is

∂E[Xv(θ)]

∂vi
= E

[
g′

(
n∑

i=1

vimi(θ)

)
mi(θ)

]
. (2)

Now one might reasonably suspect that this effect varies across prizes, and in particular,

expect that increasing the value of top ranked prizes should encourage effort, while increas-

ing the value of bottom ranked prizes should discourage effort. This intuition indeed holds

true in the extreme case where top ranked prize is the first prize and the bottom ranked

prize is the last prize. To see why, observe that p′1(.) < 0 and p′n(.) > 0, and so it follows

from Equation (1) that m1(.) ≥ 0 and mn(.) ≤ 0. Thus, increasing the first prize always

encourages effort from all agents while increasing the last prize always discourages effort

from all agents. In the remainder of this subsection, we focus on the effect of increasing

intermediate prizes on effort, showing in particular that the effect actually depends on the

underlying distribution of abilities.

We first focus on the case where cost is linear. In this case, it follows from Equation

(2) that the marginal effect of increasing prize i is simply E[mi(θ)]. The following result

identifies conditions on distributions under which this effect may be positive, or negative.

Theorem 1. For any intermediate prize i ∈ {2, . . . , n− 1}, the following hold:

1. If h(t) is increasing on (0, 1), then E[mi(θ)] ≥ 0.

2. If h(t) is decreasing on (0, 1), then E[mi(θ)] ≤ 0.

5When θ = 0, notice that if limθ→0 Xv(θ) is finite, the agent of type θ = 0 can choose any x ≥ limθ→0 Xv(θ)

in equilibrium. But since θ = 0 is a measure zero event, the precise choice of Xv(0) does not matter for our

results, and we define it as above for concreteness.
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To prove Theorem 1, we show that for any prize i ∈ {1, . . . , n},

E[mi(θ)] = −
∫ 1

0

p′i(t)h(t)dt. (3)

From here, the single-crossing property of p′i(.) for any intermediate prize i leads to its effect

being distribution dependent, with Lemma 3 enabling us to obtain the specific sufficient con-

ditions in the result. Intuitively, unlike the first and last prize, increasing any intermediate

prize has contrasting effects on different agent types. It encourages effort from unproductive

agents while discouraging effort from the productive agents (as illustrated in Figure 1), and

thus, the overall effect depends on the relative likelihood of these agents. In particular, from

the sufficient conditions in Lemma 2, we get that if the density is increasing in marginal

costs so that the distribution is predominantly unproductive, the overall effect is positive,

and if the density is decreasing in marginal costs so that the distribution is predominantly

productive (with the additional condition that extremely productive agents are possible),

the overall effect is negative.

Now for the case of general costs, we show that the effect of increasing intermediate

prize can sometimes be informed by the effect of such a transformation under linear costs.

The idea is that with general costs, one can essentially reinterpret the Bayesian game as

one in which the agents are directly choosing effort cost c(x) instead of effort x. With this

interpretation, E[mi(θ)] captures not just the effect on expected effort under linear costs, but

more generally, the effect on expected effort costs E[c(Xv(θ))]. And as the following result

shows, it is sometimes sufficient to recover the qualitative effect on expected effort as well.

Proposition 1. For any intermediate prize i ∈ {2, . . . , n− 1}, the following hold:

1. If c(.) is convex and E[mi(θ)] ≥ 0, then for any contest v,
∂E[Xv(θ)]

∂vi
≥ 0.

2. If c(.) is concave and E[mi(θ)] ≤ 0, then for any contest v,
∂E[Xv(θ)]

∂vi
≤ 0.

To prove Proposition 1, we use the single-crossing property of mi(θ), and then apply

Lemma 3 on the representation of expected marginal effects in Equation (2). Intuitively,

we know that increasing an intermediate prize i encourages effort from unproductive agents,

while discouraging effort from productive agents. Since unproductive agents exert lower

effort than productive agents, if the change in expected effort cost is positive under convex

costs, it must be that the effort of unproductive agents increases more than the decrease in
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the effort of the productive agents. An analogous reasoning applies when cost is concave and

the expected effort costs decrease.6

3.2 Increasing competition

In this subsection, we study the effect of increasing competition on expected equilibrium

effort. Following the recent literature in contest design (Fang, Noe, and Strack [11]), we

say a contest v is more competitive than w if v can be obtained from w by a sequence of

transfers from worse ranked prizes to better ranked prizes, and we investigate the effect of

such transfers on expected effort. From Equation (2), the marginal effect of transferring

value of from a worse-ranked prize j ∈ {1, . . . , n} to a better-ranked prize i ∈ {1, . . . , n} is

∂E[Xv(θ)]

∂vi
− ∂E[Xv(θ)]

∂vj
= E

[
g′

(
n∑

i=1

vimi(θ)

)
(mi(θ)−mj(θ))

]
. (4)

We already know that increasing the first prize and decreasing the last prize encourages

effort from all agents, and thus, increasing competition by transferring value from last prize

to the first prize encourages effort. In the remainder of this subsection, we investigate the

effect of increasing competition via transfers that involve intermediate prizes.

As before, we first focus on the case where the cost is linear. In this case, it follows

from Equation (4) that the effect of increasing competition is simply E[mi(θ)−mj(θ)]. In a

model with θ > 0, Moldovanu and Sela [21] showed that transferring value to the first prize

always encourages effort (i.e., E[m1(θ)] > E[mj(θ)] for any j ∈ {2, . . . , n}), thus establishing
the optimality of the winner-takes-all contest for maximizing expected effort under linear

costs. While this suggests that increasing competition might generally encourage effort, the

following result shows that this isn’t necessarily the case.

Theorem 2. For any pair of prizes i, j ∈ {2, . . . , n− 1} with i ≤ j, the following hold:

1. E[m1(θ)] > E[mj(θ)].

2. If h(t) is concave on (0, 1), then E[mi(θ)] ≥ E[mj(θ)].

3. If h(t) is convex on (0, 1), then E[mi(θ)] ≤ E[mj(θ)].

6Our results for the effect of increasing intermediate prizes have implications for the design problem where

the designer can costlessly award any number of homogeneous prizes. This problem was studied by Liu and

Lu [20] under linear costs, and we can use Proposition 1 to extend the results to more general cost functions.
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To prove Theorem 2, we show that for any pair i, j ∈ {2, . . . , n− 1} with i < j,

E[mi(θ)]− E[mjθ)] =

∫ 1

0

(pi(t)− pj(t))h
′(t)dt. (5)

From here, we use the single-crossing property of pi(t)− pj(t) which, together with Lemma

3, leads to the sufficient conditions in the result.7 Thus, even though increasing competition

by transferring value from an intermediate prize to the first prize always encourages effort,

there exist distributions for which transferring value to any other better-ranked intermedi-

ate prize (including the second prize) might actually discourage effort. Intuitively, such a

transformation discourages effort from the least productive agents, while encouraging effort

from the moderately productive agents (as illustrated in Figure 1). The effect on the most

productive agents may be positive or negative. The overall effect of increasing competition

is, therefore, determined by the likelihood of the moderately productive agents.

Now for the case of general costs, we again show that the effect of increasing competition

can sometimes be informed by the effect of such a transformation under linear costs. As

noted above, increasing competition can have a positive or negative effect on the effort of

the most productive agents. In case the transformation encourages effort from the most

productive agents, captured by the condition that the effort of the most productive agent

increases, the effect under general costs may be informed by the effect under linear costs.8

Proposition 2. Consider any pair of prizes i, j ∈ {1, . . . , n − 1} with i < j. If i = 1 or if

mi(θ) ≥ mj(θ), the following hold:

1. If c is concave and E[mi(θ)] ≥ E[mj(θ)], then for any contest v,
∂E[Xv(θ)]

∂vi
≥ ∂E[Xv(θ)]

∂vj
.

2. If c is convex and E[mi(θ)] ≤ E[mj(θ)], then for any contest v,
∂E[Xv(θ)]

∂vi
≤ ∂E[Xv(θ)]

∂vj
.

7While Theorem 2 does not say anything about the effect of transferring value from the last prize to an

intermediate prize, we illustrate through an example that even this transformation may discourage effort.

Consider Θ = [0, 1] with F (θ) = θp where p > 1
2 . For n = 3 agents, we can use Lemma 1 to show that

E[m2(θ)] =
2p(p−1)

(3p−1)(2p−1) and E[m3(θ)] =
−2p
3p−1 , so that E[m2(θ)] < E[m3(θ)] if

1
2 < p < 2

3 .
8In recent work, Baranski and Goel [1] study the effect of competition in contests with finite type-spaces,

and show that the effect under general costs may be informed by the effect under linear costs if the equilibrium

utility of the most productive agent decreases. This is equivalent to the condition that the equilibrium effort

of the most productive agent increases in our setting, since this agent always wins the first prize.
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To prove Proposition 2, we show that if the effort of the most productive agent increases,

mi(θ)−mj(θ) exhibits the single-crossing property. And then, we apply Lemma 3 on the rep-

resentation in Equation (4). Despite being somewhat limited in scope, Proposition 2 provides

a convenient method to check if increasing competition would encourage or discourage ef-

fort in fairly general environments, and in particular, has implications for the classical design

problem of allocating a fixed budget. For concave costs, since E[m1(θ)] > E[mj(θ)] (Theorem

2), it allows us to recover the optimality of the winner-takes-all contest (Moldovanu and Sela

[21]). And perhaps more interestingly, for convex costs, it reveals conditions under which the

designer would optimally allocate equal value (if any) to each of the n−2 intermediate prizes.9

Finally, in Theorems 1 and 2, we observe that the sufficient conditions under which

increasing intermediate prizes or competition encourages effort (h(t) is increasing or concave)

hold quite generally, encompassing cases like the the uniform distribution on [θ, θ]. However,

the conditions under which they discourage effort (h(t) is decreasing or convex) are more

restrictive, as they imply the possibility of extremely productive agents (θ = 0). While θ = 0

allows for a clean presentation of the results, we note that the insights revealed about how the

effect of these transformations depend on the underlying distribution hold more generally. We

illustrate our results in Table 1 for parametric distributions F (θ) = θp and F (θ) = 1−(1−θ)q

on Θ = [0, 1]. But we can compute the expected marginal effects for the appropriately scaled

and translated versions of these distributions on Θ = [θ, θ], where θ is small but positive, and

show that increasing some intermediate prizes would still discourage effort when productive

agents are more likely than unproductive agents, and increasing competition by transferring

value from some worse-ranked intermediate prizes to some better-ranked intermediate prizes

would still discourage effort when moderately productive agents are unlikely.

4 Grading schemes

In this section, we discuss the application of our results to the design of grading schemes,

interpreting grades as signals about the private abilities of the participating agents.

9We can provide examples where increasing competition encourages effort from the most productive agent

(mi(θ) ≥ mj(θ)) so that Proposition 2 applies. But it appears difficult to simultaneously have that these

transformations discourage expected effort costs (E[mi(θ)] ≤ E[mj(θ)]). If they exist, such examples would

provide instances where allocating equal value to n−2 intermediate prizes is optimal, in contrast to previous

literature which has generally identified conditions under which either the winner-takes-all contest or contests

with multiple descending prizes are optimal (Moldovanu and Sela [21], Zhang [33], Olszewski and Siegel [25]).
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(a) Increasing prizes (b) Increasing competition

Figure 1: Effect on manipulating prizes on effort with n = 4, Θ = [0, 1], F (θ) = θ2, c(x) = x.

Formally, the designer chooses a grading scheme, defined by a sequence of strictly in-

creasing natural numbers g = (n1, . . . , nB) where nB = n, with n0 = 0 whenever needed.

Given g, all agents simultaneously choose their effort. The agents are ranked according

to their effort and awarded the corresponding grades (with ties broken uniformly at ran-

dom), so that the top n1 agents receive a common grade s1, the next n2−n1 agents receive a

common grade s2, and so on, until the last nB−nB−1 agents who receive a common grade sB.

The value of a grade for an agent is derived from the information it reveals about their

private type.10 In particular, if an agent obtains grade sb, the market interprets this grade

as a signal that this agent’s private type θ ∈ [θ, θ] ranks between nb−1 + 1 and nb (both

inclusive) in a random sample of size n. Together with the common prior F : [θ, θ] → [0, 1],

this signal induces a posterior on the agent’s type and we assume that there is a strictly

decreasing wage function so that the value of the grade equals the agent’s expected wage

under this posterior.

Assumption 2. There is a strictly decreasing wage function w : [θ, θ] → R+ such that under

10Note that the informative value of a grade depends on the strategy of the agents. For instance, a trivial

equilibrium strategy is one where none of the agents exert any effort. To see why this is an equilibrium,

observe that under this strategy profile, the grade obtained by an agent does not reveal any information

about its type, and thus, there is no incentive for any agent to exert higher effort and obtain a better grade.

For our analysis, we focus on the case where the market interprets grades in a way that is consistent with

the assumption that more productive agents exert greater effort.

14



any grading scheme g = (n1, . . . , nB), an agent’s value from receiving grade sb is given by

E[w(θ)|θ ∈ {θ(nb−1+1), θ(nb−1+2), . . . , θ(nb)}],

where θ(i) denotes the ith order statistic in an i.i.d. sample θ1, θ2, . . . , θn.

Thus, under the grading scheme g = (n1, . . . , nB), if agent j chooses effort xj and receives

grade sb, its payoff is simply

E[w(θ)|θ ∈ {θ(nb−1+1), θ(nb−1+2), . . . , θ(nb)}]− θjc(xj).

We are interested in finding grading schemes that maximize expected equilibrium effort.

4.1 Contests induced by grading schemes

Under Assumption 2, any grading scheme g = (n1, . . . , nB) induces a unique and well-

defined contest v(g) = (v1(g), . . . , vn(g)) among the n agents, and we now obtain a useful

representation for this contest. Observe that if a grading scheme identifies exactly an agent

who is ranked i ∈ {1, . . . , n}, the value of this signal for the agents is

v∗i = E[w(θ)|θ = θ(i)]. (6)

It follows then that the rank-revealing grading scheme grank = (1, . . . , n) induces a contest

such that for any prize i, vi(g
rank) = v∗i . At the other extreme, the no information grading

scheme gno = (n) induces a contest such that for any prize i, vi(g
no) =

∑n
i=1 v

∗
i

n
. In general,

as the following result shows, any arbitrary grading scheme g induces a contest that has a

useful representation in terms of (v∗1, v
∗
2, . . . , v

∗
n).

Lemma 5. A grading scheme g = (n1, . . . , nB) induces a contest v(g) such that for any prize

i ∈ {1, . . . , n},

vi(g) =
v∗nb−1+1 + v∗nb−1+2 + · · ·+ v∗nb

nb − nb−1

where b ∈ {1, . . . , B} is such that nb−1 < i ≤ nb.

From Lemma 5, it is easy to see that if grading scheme g′ is more informative than grad-

ing scheme g, captured by the fact that g is a subsequence of g′, the contest v(g′) is more

competitive than the contest v(g).
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Moreover, observe that under any grading scheme g = (n1, . . . , nB), the sum of all prizes

in the contest induced by g is

n∑
i=1

vi(g) =
n∑

i=1

v∗i = nE[w(θ)].

Thus, as in the classical contest design problem, the designer essentially has a fixed budget

of v∗1 + v∗2 + · · · + v∗n that it can distribute across n prizes. However, unlike the classical

problem, the designer cannot arbitrarily distribute this budget and is constrained to choose

between the finitely many distributions that can be induced via grading schemes.

4.2 Effort-maximizing grading schemes

In this subsection, we will study effort-maximizing grading schemes. We will focus mostly

on the design problem under linear costs, and briefly discuss implications of our results for

general costs.

In the classical case, where the designer can allocate the entire budget arbitrarily, the

optimal distribution under linear costs entails allocating the entire budget to the first prize,

irrespective of the distribution of abilities. However, Lemma 5 implies certain bounds on the

values that can be allocated to different prizes, and in particular, constrains the value of the

first prize to be at most v∗1. While an effort-maximizing grading rule will always have the

property that the first prize is allocated its maximum possible value of v∗1, meaning that the

best-performing agent is always uniquely identified, the optimal distribution of the remaining

budget of v∗2+ · · ·+v∗n among the remaining n−1 prizes depends on how manipulating these

prizes and transferring value between these prizes effects effort. As we derived in Theorems

1 and 2, these effects depend on the distribution of abilities. Consequently, the structure of

the effort-maximizing grading scheme also depends in an important way on the underlying

distribution of abilities.

Theorem 3. Suppose the cost function is c(x) = x.

1. If h(t) is concave, ∃k such that g = (1, 2, . . . , k, n) is optimal. In case h(t) is increasing

as well, g = (1, 2, . . . , n) is optimal.

2. If h(t) is convex, ∃k such that g = (1, k, n) is optimal. In case h(t) is increasing as

well, g = (1, n− 1, n) is optimal.
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To prove Theorem 3, we use the fact that more informative grading schemes induce more

competitive contests, and then exploit the effects of increasing competition from Theorem 2

to solve for the effort-maximizing grading schemes. More precisely, when h(t) is concave so

that moderately productive agents are likely, it follows that more informative schemes en-

courage effort. Thus, the effort-maximizing grading scheme generally provides precise signals

about the ranks of the agents, revealing exactly the rank of the top k agents while pooling

the remaining n−k agents together with a common grade. In comparison, when h(t) is con-

vex so that moderately productive agents are unlikely, it follows that informative schemes

discourage effort. Thus, the effort-maximizing grading scheme provides limited information

about the ranks of the agents, pooling them by awarding at most three different grades.

In case h(t) is increasing, we obtain a more precise description with the effort maximizing

grading scheme revealing all ranks exactly when h(t) is concave, and pooling all intermediate

ranks together with a common grade when h(t) is convex.

Table 1 illustrates the results for two parametric classes of distributions on Θ = [0, 1],

F (θ) = θp with p > 1
2
, and F (θ) = 1− (1− θ)q for q > 0. Notice that for p > 1, the density

is bounded above by p, whereas if 1
2
< p < 1, extremely productive agents become highly

likely. Similarly, for q > 1, the density is bounded above by q, but for 0 < q < 1, extremely

unproductive agents become highly likely. The bounded densities ensure that moderately

productive are relatively likely, in which case the effort-maximizing grading schemes are

highly informative. In comparison, when extreme productivity agents (high or low) become

highly likely, we get that effort-maximizing grading schemes exhibit a coarse structure.

Density f(θ) h(t) = t
F−1(t)

Order (λi = E[mi(θ)]) Grading scheme

pθp−1, p > 1 incr., concave λ1 > λ2 > · · · > λn−1 > 0 > λn (1, 2, 3, . . . , n)

q(1− θ)q−1, q > 1 decr., concave λ1 > 0 > λ2 > · · · > λn−1; 0 > λn (1,2,. . . , k, n)

q(1− θ)q−1, 0 < q < 1 incr., convex λ1 > λn−1 > · · · > λ2 > 0 > λn (1, n-1, n)

pθp−1, 1
2
< p < 1 decr., convex λ1 > 0 > λn−1 > · · · > λ2; 0 > λn (1,k,n)

Table 1: Optimal grading schemes with linear costs for different distributions on Θ = [0, 1]
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Lastly, we discuss the implications of our results for the design of grading schemes under

general costs. Focusing on environments where increasing competition encourages effort

from the most productive agent (as required in Proposition 2), we can solve for the effect of

increasing competition on expected effort under linear costs (Equation (5)). If this effect is

positive, more informative grading schemes would encourage effort under concave costs, and

if this effect is negative, more informative grading schemes would discourage effort under

convex costs (Proposition 2).

5 Conclusion

We study how grading schemes influence effort in a model where grades provide signals about

the private abilities of the participating agents. Towards this goal, we first investigate how

manipulating individual prizes and increasing competition influences effort in contests with

private abilities. Under linear costs, we identify ability distributions under which increasing

prizes or increasing competition may encourage or discourage effort, and further identify

conditions under which these effects persist even under more general cost functions. Our

results suggest that the effect of increasing prizes is determined by the relative likelihood of

productive and unproductive agents, while the effect of increasing competition is determined

by the likelihood of moderately productive agents.

We then discuss implications for the design of grading schemes. Under our interpretation

of grading schemes as information disclosure policies, we find that more informative grading

schemes induce more competitive contests. Using our results on the effect of competition,

we get that more informative grading schemes encourage effort when moderately productive

agents are likely, and discourage effort when they are unlikely. Consequently, the effort-

maximizing grading rule may range from a fully informative rank-revealing grading scheme

that reveals exactly the rank obtained by each agent with a unique grade, to a coarse

grading scheme that pools the performances of many agents together by awarding at most

three different grades.
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A Proofs for Section 2 (Model)

Lemma 1. For any i ∈ {1, . . . , n} and k ∈ R such that i+ k > 1,∫ 1

0

tkp′i(t)dt = pi(1)− k

(
n− 1

i− 1

)
B(i+ k − 1, n− i+ 1)

where B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt represents the Beta function.

Proof. For any i ∈ {1, . . . , n} and k > 1− i,∫ 1

0

tkp′i(t)dt = tkpi(t)|10 −
∫ 1

0

ktk−1pi(t)dt

= pi(1)− k

(
n− 1

i− 1

)∫ 1

0

ti+k−2(1− t)n−idt

= pi(1)− k

(
n− 1

i− 1

)
B(i+ k − 1, n− i+ 1)

Lemma 2. Suppose F : [θ, θ] → [0, 1] is a distribution that satisfies Assumption 1.

1. If f(θ) is increasing on (θ, θ), then h(t) is increasing on (0, 1).

2. If f(θ) is decreasing on (θ, θ) and θ = 0, then h(t) is decreasing on (0, 1).

3. f(θ)θ2

F 2(θ)
is decreasing on (θ, θ) ⇐⇒ h(t) is concave on (0, 1).

4. f(θ)θ2

F 2(θ)
is increasing on (θ, θ) and θ = 0 ⇐⇒ h(t) is convex on (0, 1).

Proof. Let θ(t) = F−1(t) so that h(t) =
F (θ(t))

θ(t)
. It follows that

h′(t) =
θf(θ)− F (θ)

θ2
θ′(t)

=
θf(θ)− F (θ)

θ2f(θ)
.

Differentiating again, we get

h′′(t) =
θ2f(θ)(θf ′(θ) + f(θ)− f(θ))− (θf(θ)− F (θ))(2θf(θ) + θ2f ′(θ))

θ4f 2(θ)
θ′(t)

=
θ2f(θ)f ′(θ)− (θf(θ)− F (θ))(2f(θ) + θf ′(θ))

θ3f 3(θ)

=
1

θ3f(θ)3
[
F (θ)(2f(θ) + θf ′(θ))− 2θf 2(θ)

]
.

Now we can prove the claims in order.
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1. If f(θ) is increasing on (θ, θ), then

F (θ) =

∫ θ

θ

f(t)dt ≤
∫ θ

θ

f(θ)dt = (θ − θ)f(θ),

so that θf(θ) − F (θ) ≥ θf(θ) ≥ 0 for all θ ∈ (θ, θ). It follows that h′(t) ≥ 0, and so

h(t) is increasing on (0, 1).

2. If f(θ) is decreasing on (θ, θ), then

F (θ) =

∫ θ

θ

f(t)dt ≥
∫ θ

θ

f(θ)dt = (θ − θ)f(θ),

so that θf(θ) − F (θ) ≤ θf(θ) for all θ ∈ (θ, θ). With the additional condition that

θ = 0, we get that h′(t) ≤ 0 and so h(t) is decreasing on (0, 1).

3,4. If
f(θ)θ2

F 2(θ)
is increasing on (θ, θ), then it must be that for all θ ∈ (θ, θ),

F 2(θ)(2θf(θ) + θ2f ′(θ)) ≥ f(θ)θ22F (θ)f(θ).

But this is equivalent to h′′(t) ≥ 0. Analogously, f(θ)θ2

F 2(θ)
being decreasing on (θ, θ) is

equivalent to h′′(t) < 0.

Lemma 3. Suppose f1 : [a, b] → R is such that there exists c ∈ [a, b] so that f1(x) ≤ 0 for

x ≤ c and f1(x) ≥ 0 for x ≥ c. Then, for any increasing function f2 : [a, b] → R,∫ b

a

f1(x)f2(x)dx ≥ f2(c)

∫ b

a

f1(x)dx.

Proof. Observe that∫ b

a

f1(x)f2(x)dx =

∫ c

a

f1(x)f2(x)dx+

∫ b

c

f1(x)f2(x)dx

≥
∫ c

a

f1(x)f2(c)dx+

∫ b

c

f1(x)f2(c)dx

= f2(c)

∫ b

a

f1(x)dx
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B Proofs for Section 3 (Equilibrium)

Lemma 4. For any contest v = {v1, . . . , vn}, there is a unique symmetric Bayes-Nash

equilibrium and it is such that for any θ ∈ Θ,

Xv(θ) = g

(
n∑

i=1

vimi(θ)

)
,

where

mi(θ) = −
∫ 1

F (θ)

p′i(t)

F−1(t)
dt. (1)

Proof. Suppose n− 1 agents are playing a strategy X : Θ → R+ so that if an agent’s type is

θ, it exerts effort X(θ). Further suppose that X(θ) is decreasing in θ. Now we want to find

the remaining agent’s best response to this strategy of the other agents. If the agent’s type

is θ and it pretends to be an agent of type θ̂ ∈ Θ, its payoff is

n∑
i=1

vipi(F (θ̂))− θc(X(θ̂)).

Taking the first-order condition, we get

n∑
i=1

vip
′
i(F (θ̂))f(θ̂)− θc′(X(θ̂))X ′(θ̂) = 0. (7)

Now we can plug in θ̂ = θ to get the condition for X(θ) to be a symmetric Bayes-Nash

equilibrium. Doing so, we get

n∑
i=1

vip
′
i(F (θ))f(θ)− θc′(X(θ))X ′(θ) = 0

so that ∫ θ

θ

c′(X(θ̂))X ′(θ̂)dθ̂ =

∫ θ

θ

∑n
i=1 vip

′
i(F (θ̂))

θ̂
f(θ̂)dθ̂.

Using the boundary condition X(θ) = 0, and c(0) = 0, we obtain

c(X(θ)) = −
∫ θ

θ

∑n
i=1 vip

′
i(F (θ̂))

θ̂
f(θ̂)dθ̂

= −
∫ 1

F (θ)

∑n
i=1 vip

′
i(t)

F−1(t)
dt (Substituting F (θ̂) = t)

=
n∑

i=1

vi

[
−
∫ 1

F (θ)

p′i(t)

F−1(t)
dt

]
.
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This gives us a precise candidate equilibrium Xv(θ), and we can verify that X ′
v(θ) < 0 for all

θ ∈ (θ, θ) so that Xv(θ) is indeed decreasing in marginal cost. Now we can repeat the above

exercise with this specific candidate strategy. By construction, the first-order condition in

Equation (7) will be uniquely satisfied at θ̂ = θ for any agent of type θ ∈ (θ, θ). Further,

differentiating the left-hand side of Equation (7), we get

n∑
i=1

vi

[
p′i(F (θ̂))f ′(θ̂) + f 2(θ̂)p′′i (F (θ̂))

]
− θ

[
c′(Xv(θ̂))X

′′
v (θ̂) + c′′(Xv(θ̂))X

′2
v (θ̂)

]
,

which is c′(Xv(θ))X
′
v(θ) < 0 when θ̂ = θ so that the second-order condition is also satisfied.

Theorem 1. For any intermediate prize i ∈ {2, . . . , n− 1}, the following hold:

1. If h(t) is increasing on (0, 1), then E[mi(θ)] ≥ 0.

2. If h(t) is decreasing on (0, 1), then E[mi(θ)] ≤ 0.

Proof. Consider first the case where θ > 0. In this case, for any prize i ∈ {1, . . . , n},

E[mi(θ)] =

∫ θ

θ

mi(θ)f(θ)dθ

= mi(θ)F (θ)|θθ −
∫ θ

θ

m′
i(θ)F (θ)dθ (Integration by parts)

= −
∫ θ

θ

m′
i(θ)F (θ)dθ (mi(θ) = 0, F (θ) = 0)

= −
∫ θ

θ

p′i(F (θ))f(θ)

θ
F (θ)dθ (Leibniz rule)

= −
∫ 1

0

p′i(t)

F−1(t)
tdt (Substituting F (θ) = t)

= −
∫ 1

0

p′i(t)h(t)dt.

Now for any intermediate prize i ∈ {2, . . . , n− 1}, observe that
∫ 1

0
p′i(t)dt = 0, and also,

there exists c ∈ [0, 1] such that p′i(t) ≥ 0 for t ≤ c and p′i(t) ≤ 0 for t ≥ c.

1. If h(t) is increasing on (0, 1), we can apply Lemma 3 with f1(t) = −p′i(t), and f2(t) =

h(t) to get that

E[mi(θ)] ≥ h(c)

∫ 1

0

(−p′i(t))dt = 0.
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2. If h(t) is decreasing on (0, 1), we can apply Lemma 3 with f1(t) = −p′i(t), and f2(t) =

−h(t) to get that

−E[mi(θ)] ≥ −h(c)

∫ 1

0

(−p′i(t))dt = 0.

This proves the result for the case where θ > 0.

Now consider the case where θ = 0. In this case, we can again directly use the above

argument, except that we need to additionally ensure that limθ→0mi(θ)F (θ) = 0. This is

because even though F (θ) = 0, it might be the case that limθ→0mi(θ) = ∞. For this case,

lim
θ→0

mi(θ)F (θ) = lim
θ→0

mi(θ)
1

F (θ)

= lim
θ→0

−m′
i(θ)F

2(θ)

f(θ)
(L’Hospital’s rule)

= lim
θ→0

−p′i(F (θ))F 2(θ)

θ
(Leibniz rule)

= lim
t→0

− p′i(t)t
2

F−1(t)
(Substituting F (θ) = t)

= 0 (Assumption 1)

Thus, Assumption 1 ensures that in case θ = 0, limθ→0mi(θ)F (θ) = 0, and we can indeed

apply the steps in the argument for θ > 0 to this case as well, thus proving the result.

Proposition 1. For any intermediate prize i ∈ {2, . . . , n− 1}, the following hold:

1. If c(.) is convex and E[mi(θ)] ≥ 0, then for any contest v,
∂E[Xv(θ)]

∂vi
≥ 0.

2. If c(.) is concave and E[mi(θ)] ≤ 0, then for any contest v,
∂E[Xv(θ)]

∂vi
≤ 0.

Proof. From Equation (2), we have that

∂E[Xv(θ)]

∂vi
=

∫ θ

θ

g′

(
n∑

i=1

vimi(θ)

)
mi(θ)f(θ)dθ.

Observe that
∫ θ

θ
mi(θ)f(θ)dθ = E[mi(θ)], and moreover, there exists θ̂ ∈ [θ, θ] such that

mi(θ)f(θ) ≤ 0 for θ ≤ θ̂ and mi(θ)f(θ) ≥ 0 for θ ≥ θ̂. Now we can prove the claims in order.
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1. Consider any convex cost function c(.) and any contest v. It follows that g = c−1 is

concave, so that g′(.) is an decreasing function, and thus, g′ (
∑n

i=1 vimi(θ)) is increasing

in θ. Now we can apply Lemma 3 with f1(θ) = mi(θ)f(θ), and f2(θ) = g′ (
∑n

i=1 vimi(θ))

to get that

∂E[Xv(θ)]

∂vi
≥ g′

(
n∑

i=1

vimi(θ̂)

)
E[mi(θ)].

In particular, we get that if E[mi(θ)] ≥ 0, then
∂E[Xv(θ)]

∂vi
≥ 0.

2. Consider any concave cost function c(.) and any contest v. It follows that g = c−1 is

convex, so that g′(.) is an increasing function, and thus, g′ (
∑n

i=1 vimi(θ)) is decreasing in

θ. Now we can apply Lemma 3 with f1(θ) = mi(θ)f(θ), and f2(θ) = −g′ (
∑n

i=1 vimi(θ))

to get that

−∂E[Xv(θ)]

∂vi
≥ −g′

(
n∑

i=1

vimi(θ̂)

)
E[mi(θ)].

In particular, we get that if E[mi(θ)] ≤ 0, then
∂E[Xv(θ)]

∂vi
≤ 0.

Theorem 2. For any pair of prizes i, j ∈ {2, . . . , n− 1} with i ≤ j, the following hold:

1. E[m1(θ)] > E[mj(θ)].

2. If h(t) is concave on (0, 1), then E[mi(θ)] ≥ E[mj(θ)].

3. If h(t) is convex on (0, 1), then E[mi(θ)] ≤ E[mj(θ)].

Proof. We prove the claims in order.

1. For any j ∈ {2, . . . , n− 1}, it follows from Equation (3) that

E[m1(θ)]− E[mj(θ)] =

∫ 1

0

(
p′j(t)− p′1(t)

) t

F−1(t)
dt.

From Lemma 1,∫ 1

0

(
p′j(t)− p′1(t)

)
tdt = pj(1)−

(
n− 1

j − 1

)
B(j, n− j + 1)− p1(1) + B(1, n)

= 0,
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and moreover, there exists c ∈ [0, 1] such that (p′j(t)− p′1(t))t ≥ 0 for t ≤ c and (p′j(t) −
p′1(t))t ≤ 0 for t ≥ c. Since 1

F−1(t)
is strictly decreasing in t on (0, 1), we can apply Lemma

3 with f2(t) = − 1
F−1(t)

and f1(t) = −(p′j(t)− p′1(t))t to get that

E[m1(θ)]− E[mj(θ)] > − 1

F−1(c)

∫ 1

0

−
(
p′j(t)− p′1(t)

)
tdt = 0.

2,3. Consider first the case where θ > 0. For any i, j ∈ {2, . . . , n − 1} with i < j, it follows

from Equation (3) that

E[mi(θ)]− E[mj(θ)] =

∫ 1

0

(
p′j(t)− p′i(t)

)
h(t)dt

= (pj(t)− pi(t))h(t)|10 −
∫ 1

0

(pj(t)− pi(t))h
′(t)dt

=

∫ 1

0

(pi(t)− pj(t))h
′(t)dt.

Observe that
∫ 1

0
(pi(t) − pj(t))dt = 0, and moreover, there exists c ∈ [0, 1] such that

pi(t)− pj(t) ≥ 0 for t ≤ c and pi(t)− pj(t) ≤ 0 for t ≥ c.

If h(t) is concave on (0, 1), h′(t) is monotone decreasing on (0, 1), and we can apply

Lemma 3 with f1(t) = −(pi(t)− pj(t)), and f2(t) = −h′(t) to get that

E[mi(θ)]− E[mj(θ)] ≥ −h′(c)

∫ 1

0

−(pi(t)− pj(t))dt = 0.

If h(t) is convex on (0, 1), h′(t) is monotone increasing on (0, 1), and we can apply Lemma

3 with f1(t) = −(pi(t)− pj(t)), and f2(t) = h′(t) to get that

− [E[mi(θ)]− E[mj(θ)]] ≥ h′(c)

∫ 1

0

−(pi(t)− pj(t))dt = 0.

This proves the result for the case where θ > 0.

Now consider the case where θ = 0. In this case, we can again directly use the above

argument, except that we need to additionally ensure that limt→0(pj(t)− pi(t))h(t) = 0.

This is because even though pj(0)− pi(0) = 0, it might be the case that limt→0 h(t) = ∞.

For this case, observe that for any k ∈ {2, . . . , n− 1},

lim
t→0

pk(t)h(t) = lim
t→0

(
n− 1

k − 1

)
tk(1− t)n−k

F−1(t)
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= 0 (Assumption 1),

which implies that for any i, j ∈ {2, . . . , n − 1}, limt→0(pj(t) − pi(t))h(t) = 0. Thus,

Assumption 1 ensures that even in the case that θ = 0, we can apply the steps in the

argument for θ > 0, thus proving the result.

Proposition 2. Consider any pair of prizes i, j ∈ {1, . . . , n − 1} with i < j. If i = 1 or if

mi(θ) ≥ mj(θ), the following hold:

1. If c is concave and E[mi(θ)] ≥ E[mj(θ)], then for any contest v,
∂E[Xv(θ)]

∂vi
≥ ∂E[Xv(θ)]

∂vj
.

2. If c is convex and E[mi(θ)] ≤ E[mj(θ)], then for any contest v,
∂E[Xv(θ)]

∂vi
≤ ∂E[Xv(θ)]

∂vj
.

Proof. From Equation (4), we have that

∂E[Xv(θ)]

∂vi
− ∂E[Xv(θ)]

∂vj
=

∫ θ

θ

g′

(
n∑

i=1

vimi(θ)

)
[mi(θ)−mj(θ)] f(θ)dθ.

From Equation (1), the effect on effort exerted by agent of type θ ∈ Θ is captured by

mi(θ)−mj(θ) =

∫ 1

F (θ)

p′j(t)− p′i(t)

F−1(t)
dt.

From here, one can verify that

1. mi(θ)−mj(θ) = 0,

2. mi(θ)−mj(θ) =
∫ 1

0

p′j(t)−p′i(t)

F−1(t)
dt,

3. m′
i(θ)−m′

j(θ) =
[
p′i(F (θ))− p′j(F (θ))

] f(θ)
θ
.

Observe that if i = 1, p′1(t) − p′j(t) is initially negative, and then positive. Thus, there

exists a θ̂ ∈ [θ, θ] such that m1(θ)−mj(θ) ≥ 0 for θ ≤ θ̂, and mi(θ)−mj(θ) ≤ 0 for θ ≥ θ̂.

And if 1 < i < j < n, then p′i(t) − p′j(t) is initially positive, then negative, and then

again positive. Since we assume mi(θ)−mj(θ) ≥ 0, these properties imply that there exists

a θ̂ ∈ [θ, θ] such that mi(θ) −mj(θ) ≥ 0 for θ ≤ θ̂, and mi(θ) −mj(θ) ≤ 0 for θ ≥ θ̂. Now

we can prove the claims in order.
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1. Consider any concave cost function c(.) and any contest v. It follows that g = c−1 is

convex, so that g′(.) is an increasing function, and thus, g′ (
∑n

i=1 vimi(θ)) is decreasing

in θ. Now we can apply Lemma 3 with f1(θ) = −(mi(θ) − mj(θ))f(θ), and f2(θ) =

−g′ (
∑n

i=1 vimi(θ)) to get that

∂E[Xv(θ)]

∂vi
− ∂E[Xv(θ)]

∂vj
≥ −g′

(
n∑

i=1

vimi(θ̂)

)
(− [E[mi(θ)−mj(θ)]]) .

In particular, if E[mi(θ)] ≥ E[mj(θ)], then
∂E[Xv(θ)]

∂vi
≥ ∂E[Xv(θ)]

∂vj
.

2. Consider any convex cost function c(.) and any contest v. It follows that g = c−1 is

concave, so that g′(.) is an decreasing function, and thus, g′ (
∑n

i=1 vimi(θ)) is increasing

in θ. Now we can apply Lemma 3 with f1(θ) = −(mi(θ) − mj(θ))f(θ), and f2(θ) =

g′ (
∑n

i=1 vimi(θ)) to get that

−
[
∂E[Xv(θ)]

∂vi
− ∂E[Xv(θ)]

∂vj

]
≥ g′

(
n∑

i=1

vimi(θ̂)

)
(− [E[mi(θ)−mj(θ)]]) .

In particular, if E[mj(θ)] ≥ E[mi(θ)], then
∂E[Xv(θ)]

∂vj
≥ ∂E[Xv(θ)]

∂vi
.

C Proofs for Section 4 (Grading schemes)

Lemma 5. A grading scheme g = (n1, . . . , nB) induces a contest v(g) such that for any prize

i ∈ {1, . . . , n},

vi(g) =
v∗nb−1+1 + v∗nb−1+2 + · · ·+ v∗nb

nb − nb−1

where b ∈ {1, . . . , B} is such that nb−1 < i ≤ nb.

Proof. By Assumption 2, if a grading scheme identifies exactly an agent who is ranked

i ∈ {1, . . . , n}, the value of prize i under this grading scheme is

v∗i = E[w(θ)|θ = θ(i)].

Notice that for any pair of prizes i, j with i < j, θ(j) stochastically dominates θ(i), and

since the wage function w : [θ, θ] → R+ is strictly decreasing, it must be that v∗i > v∗j . Now
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consider any arbitrary grading scheme g = (n1, . . . , nB). If an agent is ranked i ∈ {1, . . . , n},
it will receive a grade sb where b must be such that nb−1 < i < nb. Then, the market learns

that the agent’s rank must be one of {nb−1 + 1, . . . , nb}, and moreover, it is equally likely

to be ranked at any of these nb − nb−1 positions. Since the value of a grade is equal to the

agent’s expected wage under the posterior induced by the grade, the result follows.

Theorem 3. Suppose the cost function is c(x) = x.

1. If h(t) is concave, ∃k such that g = (1, 2, . . . , k, n) is optimal. In case h(t) is increasing

as well, g = (1, 2, . . . , n) is optimal.

2. If h(t) is convex, ∃k such that g = (1, k, n) is optimal. In case h(t) is increasing as

well, g = (1, n− 1, n) is optimal.

Proof. Let λi = E[mi(θ)] from Equation (3) and let v∗i = E[w(θ)|θ = θ(i)]. Then, by Lemma

5, the expected effort induced by an arbitrary grading scheme g = (n1, . . . , nB) is

n∑
i=1

λivi(g),

where

vi(g) =
v∗nb−1+1 + v∗nb−1+2 + · · ·+ v∗nb

nb − nb−1

and b is such that nb−1 < i ≤ nb. Let g = (n1, n2, . . . , nB) with nB = n denote the effort-

maximizing grading scheme.

First, we show that n1 = 1. Suppose towards a contradiction that n1 > 1. Consider

the grading scheme g′ = (1, n1, n2, . . . , nB) which is the same as g except that it uniquely

identifies the best performing agent and pools the next n1 − 1 agents together. Then, it

follows from Lemma 5 that v(g′) can be obtained from v(g) by a sequence of transfers from

intermediate prizes 2, 3, . . . , n1 to the first prize. And since λ1 > λj for any j ∈ {2, . . . , n}
(Theorem 2), each of these transfers leads to an increase in expected effort. Thus, the

expected effort under g′ must be higher than g, which is a contradiction. Therefore, it must

be that n1 = 1, so that the best performing agent is uniquely identified. The full structure

of g depends on F (.), and we now prove the claims in the result.

1. If h(t) is concave, we know from Theorem 2 that

λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn−1.
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We want to show ∃k such that g = (1, 2, . . . , k, n), which means that agents who are not

pooled together with the worst-performing agent must be uniquely identified. Consider

an arbitrary grading scheme g′ = (1, n2, n3, . . . , nB−1, n) and define g′′ = (1, 2, 3, . . . , k, n)

where k = nB−1. Then, if g′′ ̸= g′, v(g′′) can be obtained from v(g′) by a sequence of

transfers from lower ranked intermediate prizes to better ranked intermediate prizes, each

of which encourages effort. Thus, g′′ induces greater effort than g′. It follows that the

optimal grading scheme g must take the form (1, 2, . . . , k, n). If h(t) is increasing as well,

we further have that λn−1 ≥ 0 ≥ λn (Theorem 1), which leads to the rank-revealing

scheme g = (1, 2, . . . , n) being optimal.

2. If h(t) is convex, we know from Theorem 2 that

λ1 > λn−1 ≥ λn−2 ≥ · · · ≥ λ2.

We want to show that ∃k such that g = (1, k, n), which means that all agents, except the

first, who are not pooled together with the worst-performing agent are pooled together

with a common grade. Consider an arbitrary grading scheme g′ = (1, n2, n3, . . . , nB−1, n)

and define g′′ = (1, k, n) where k = nB−1. Then, if g′′ ̸= g′, v(g′) can be obtained from

v(g′′) by a sequence of transfers from lower ranked intermediate prizes to better ranked

intermediate prizes, each of which discourages effort. Thus, g′′ induces greater effort than

g′. It follows that the optimal grading scheme g must take the form (1, k, n). If h(t) is

increasing as well, we further have that λ2 ≥ 0 ≥ λn (Theorem 1), which leads to the

grading scheme g = (1, n− 1, n) being optimal.
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