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Abstract

We study the effect of feedback policies in a two-stage all-pay auction with two play-

ers. Equilibrium outcomes are characterized by Cheapest Signal Equilibria, wherein

at least one agent bids 0 in stage 1, payoffs for both players are zero, and sum of total

bids equals the prize value. We conduct an experiment with four natural feedback

policy treatments—full, rank, and two cutoff policies—and while the bids deviate from

equilibrium, we fail to reject the hypothesis of no treatment effect on total bids. We

also test for the effect of sunk costs and head starts from stage 1 bids on stage 2 bids.

1 Introduction

Contests are situations in which agents make costly investments to win valuable prizes. In

many such settings, investments occur across multiple stages, often accompanied by feedback

about the investments of others in earlier stages. For instance, in research and development

(R&D) competitions, firms may learn about the progress of their rivals through public dis-

closures. In sports or programming tournaments, participants observe their interim standing

through leaderboards. In classroom settings, students may receive feedback at intermediate
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points, such as after a midterm, about the distribution of scores or the proportion of peers

who performed above a certain threshold. Across these environments, participants receive

various forms of feedback, which may not only inform subsequent investments but also shape

initial investments through strategic considerations such as signaling or deterrence.

In this paper, we study how feedback policies influence investment behavior in a two-

stage all-pay auction model with two players. Each player bids over two stages to win a

common-value prize. The player with the higher total bid wins the prize, while both players

pay their total bids. Before the auction begins, the auctioneer commits to a feedback policy,

defined as a partition of the bid domain such that, after the first stage, each player learns

the element of the partition containing their opponent’s stage 1 bid. To ensure existence of

equilibrium, we restrict attention to feedback policies that admit a cheapest bid for every

signal (i.e., for each element of the partition).

We show that sequential equilibrium outcomes are characterized by Cheapest Signal

Equilibria (CSE). In equilibrium (on path), stage 1 bidding is such that one player bids zero

while the other chooses the cheapest bid corresponding to some signal, and stage 2 bidding

then coincides with the (unique) Nash equilibrium of the single-stage all-pay auction with

exogenous head starts. We analyze the rank feedback policy separately, as it falls outside

the class of policies considered above, and show that both players must bid zero in stage 1

and then mix uniformly between zero and the prize value in stage 2.

This equilibrium characterization yields an irrelevance result : the auctioneer’s equilib-

rium profit is zero, irrespective of the feedback policy. However, the set of equilibria itself

depends on the feedback policy. Apart from the robust equilibrium in which both players bid

zero in stage 1, the remaining equilibria are asymmetric and require players to coordinate on

which one bids zero in stage 1. When such coordination fails, both players may bid positively

in stage 1, thereby generating sunk costs : costs incurred in stage 1 that yield no strategic

benefit to the players in stage 2. Stage 2 bidding may then result in a player’s total bid

exceeding the value of the prize, a phenomenon we refer to as the sunk cost effect. Moreover,

stage 2 bidding entails players dropping out with a probability proportional to the perceived

difference in stage 1 bids (the head start), and in general, stage 2 bids are lower when the

head start is higher, an instance of the discouragement effect in our framework.
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We conduct a laboratory experiment to test these equilibrium predictions of the two-

stage all-pay auction model. Our implementation focuses on four natural feedback-policy

treatments: full feedback, rank feedback, and two cutoff feedback policies. While we observe

overbidding, its magnitude is similar across treatments, and we therefore fail to reject the

hypothesis of irrelevance of feedback policies for the auctioneer’s profits. For stage 2 bidding,

we observe patterns that are partly consistent with, and partly deviate from, the equilibrium

predictions. Higher sunk costs are associated with greater stage 2 bids, in line with the sunk

cost fallacy, though the effect is somewhat guarded by the prize value. The discouragement

effect of higher head starts kicks in when it is not too small, and is not as large as predicted.

Literature review

There is a vast literature on all-pay auctions. With multiple players and prizes, Barut and

Kovenock [4] establish an irrelevance of prize structure for expected equilibrium effort. Our

result can be interpreted as extending this irrelevance to feedback policies, albeit in a sim-

ple two-player model. Siegel [27] and Konrad [22] characterize equilibria in models with

exogenously fixed head starts, which we use in our own equilibrium characterization. Other

related work incorporates private abilities (Moldovanu and Sela [25]), arbitrary cost func-

tions (Fang, Noe, and Strack [15]), and noisy output (Drugov and Ryvkin [10]) within the

all-pay auction framework.

This paper contributes to the literature on feedback design in dynamic contests. Much

of the closely related theoretical work in two-stage all-pay auctions assumes noisy output,

which guarantees the existence of a Perfect Bayesian Equilibrium (PBE) in pure strategies.

With homogeneous agents, Aoyagi [1], Mihm and Schlapp [24] identify conditions under

which full feedback or no feedback is optimal. Other two-stage models consider asymmetric

agents (Hirata [19]), private abilities (Ederer [11]), binary outputs (Goltsman and Mukherjee

[17]), noisy ranking technologies (Gershkov and Perry [16]), stage prizes (Klein and Schmut-

zler [21], Sela [26]), pre-contest investments (Clark, Kundu, and Nilssen [5, 6]), and Tullock

contests (Yildirim [28]). Related streams of literature examine feedback policies in elimi-

nation contests (Zhang and Wang [29]), sequential contests (Hinnosaar [18], Deng, Fu, Wu,

and Zhu [9]), and continuous time environments (Ely, Georgiadis, Khorasani, and Rayo [13]).

There is also a growing empirical and experimental literature on the effect of interim
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feedback on effort in contests. The work closest to ours is Ederer and Fehr [12], who study

a two-stage all-pay auction with noisy output and compare biased feedback against full or

no feedback. Fallucchi, Renner, and Sefton [14] highlight the differing effects of feedback

in Tullock contests with share and lottery structures. Dechenaux and Mago [8] study how

information leakage, together with the possibility to revise bids in response, affects behav-

ior in all-pay and Tullock contests. Azmat and Iriberri [3] and Azmat, Bagues, Cabrales,

and Iriberri [2] examine the role of relative performance feedback on student outcomes in

natural field experiments. More recently, Lemus and Marshall [23] and Hudja, Roberson,

and Rosokha [20] experimentally study the effect of public leaderboards on contest outcomes

and obtain contrasting results. For a survey of the experimental literature on contests, see

Dechenaux, Kovenock, and Sheremeta [7].

The paper proceeds as follows. Section 2 presents the model. Section 3 characterizes the

sequential equilibrium and discusses the theoretical results. Sections 4 and 5 describe the

experimental design and findings, respectively. Section 6 concludes.

2 Model

2.1 Two-stage all-pay auction

Two players i ∈ {1, 2}, bid across two stages t ∈ {1, 2}, to win a prize of known common

value v = 1. Denote by bit ∈ [0, 1] the bid of player i in stage t, and denote the profile of

bids b = (b11, b12, b21, b22).
1 The total bid of player i is bi = bi1 + bi2. The player with the

larger total bid wins the prize, the player with the smaller total bid wins nothing, and both

players pay their entire total bid. In case of tie, a fair coin is flipped to determine the winner

of the prize. The expected utility of player i as a function of bids is

ui(b) =


1− bi, if bi > b−i

1
2
− bi, if bi = b−i

−bi, otherwise.

1We restrict bids in any stage to be below 1, because submitting a bid greater than 1 will always yield

strictly lower expected utility than bidding 0 (is strictly dominated by 0), and so bids greater than 1 will

never occur in equilibrium.
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2.2 Feedback policy

Before the two players participate in this two-stage auction, an auctioneer commits to a

feedback policy P , which is a partition of [0, 1]. The feedback policy P determines the infor-

mation about each player’s first stage bid that will be publicly revealed before the players

choose their second stage bids. Formally, for any bi1 ∈ [0, 1], we define P(bi1) as the element

of the partition P that contains bi1, and let it represent the public signal (or message) about

player i’s first-stage bid. Thus, under feedback policy P , if player i chooses a first-stage bid

of bi1, then player j ̸= i learns that player i chose a first-stage bid in the set P(bi1) ⊂ [0, 1].

We will restrict attention to feedback policies which admit a cheapest (smallest) first

stage bid for any feasible signal. In other words, the partition P must be such that each

element of P contains its infimum.2

Assumption 1. The feedback policy P , which is a partition of [0, 1], is such that for all

S ∈ P ,

S = inf(S) ∈ S.

We now present some examples of feedback policies:

1. No feedback: This policy reveals no information about the first stage bids, and is

captured by

PNONE = {[0, 1]}.

2. Full feedback: This policy reveals exactly the first stage bids, and is captured by

PFULL = {{bi1} : bi1 ∈ [0, 1]}.

3. Cutoff feedback: This policy reveals if a player bid at least c or strictly less than c,

and is captured by

PCUTOFF (c) = {[0, c), [c, 1]}.

While our definition precludes some natural policies, such as one which reveals how the

players rank in terms of their first stage bids, we will discuss later how our results extend to

such policies.

2As we show later, if P is such that there is an S ∈ P with inf(S) /∈ S and inf(S) > 0, then no equilibrium

exists. Furthermore, implementation in the lab requires a discretization of the bid space, as subjects can

only be paid in discrete amounts, so any implemented policy implicitly satisfies this assumption.
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2.3 Sequential Equilibrium

Given any feedback policy P , the two-stage all-pay auction defines an extensive-form game

with imperfect information between the two players. Formally, the game proceeds as follows:

1. Both players simultaneously choose their first stage bids, b11, b21 ∈ [0, 1].

2. The feedback policy P generates public signals P(b11),P(b21) ∈ P .

3. Both players simultaneously choose their second stage bids, b12, b22 ∈ [0, 1].

4. Payoffs are realized as per the rules of the two-stage all-pay auction.

Remark 1. This extensive-form game can be more formally described as one in which player

1 bids first in both stages, and player 2 bids second in both stages with no additional infor-

mation about the corresponding stage bid of player 1. For expositional purposes we define the

game as above and define corresponding solution concepts. An analysis of the more formal

extensive form yields the same theoretical results.

We first introduce the solution concept of Perfect Bayesian Equilibrium (PBE). This

constitutes describing for each player, their bidding strategy in the two stages as well as

their belief about the first stage bid of their opponent given the feedback, so that the beliefs

are consistent with the bidding strategies, and the bidding strategies are rational given the

beliefs and opponent’s strategy. We now formalize this notion.

A strategy for player i is a pair βi = (βi1, βi2), where:

• βi1 ∈ ∆[0, 1] is a probability distribution over first stage bids.

• βi2 : [0, 1] × P → ∆[0, 1] specifies a probability distribution over second stage bids,

given the player’s own first-stage bid and the observed feedback signal.

A belief for player i is a mapping µi : [0, 1] × P → ∆[0, 1] that specifies player i’s be-

lief about their opponent’s first stage bid, given their own first stage bid and the observed

feedback signal. An assessment is a pair (β, µ), where β = (β1, β2) is a strategy profile and

µ = (µ1, µ2) is a belief profile.

An assessment (β, µ) is a perfect Bayesian equilibrium (PBE) if for each player i ∈ {1, 2}:
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• Beliefs are Bayesian: The belief µi is Bayes consistent with strategy profile β, meaning

beliefs are updated using Bayes’ rule whenever possible.

• Strategies are sequentially rational: The strategy βi maximizes expected utility of

player i, given β−i and µi, at every decision node.

We will focus on the sequential equilibrium of this game, which is a refinement of PBE

that imposes constraints on beliefs at information sets that are reached with probability 0.

Formally, an assessment (β, µ) is a sequential equilibrium if it is a PBE, and there exists

a sequence of completely mixed strategy profiles β1, β2, . . . , such that limn→∞ βn = β and

limn→∞ µn = µ, where µn is the unique Bayesian belief profile under strategy profile βn.

In a PBE, a player’s belief µi about their opponent’s first stage bid can, absurdly, depend

on their own first stage bid. Sequential equilibrium requires beliefs to depend only on the

observed feedback.

Lemma 1. If (β, µ) is a sequential equilibrium, then µi must be such that for any bi1, b
′
i1 ∈

[0, 1] and S ∈ P,

µi(bi1, S) = µi(b
′
i1, S).

With this, if (β, µ) is a sequential equilibrium, we simply write µi : P → ∆[0, 1]. Further,

we say (β, µ) is a pure-strategy sequential equilibrium if βi1 = δbi1 for i ∈ {1, 2}, where δx

denotes the Dirac measure at x ∈ [0, 1].

2.4 Total equilibrium bids

We are interested in examining how feedback policies influence the auctioneer’s profit, as well

as the equilibrium payoffs of the two players. Given a feedback policy P and an assessment

(β, µ) of the induced game, let bi ∼ Fi denote the (random) total bid of player i. Then, the

expected payoff of player i is

ui(β, µ) = Pr[bi > b−i] +
1

2
Pr[bi = b−i]− E[bi],

and the auctioneer’s expected profit is

π(β, µ) = E[b1 + b2]− 1.

Notice that, by definition, the payoffs and profit must be such that

u1(β, µ) + u2(β, µ) + π(β, µ) = 0.
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Our goal is to investigate how feedback policies influence each of these quantities in equilib-

rium.

3 Theoretical Results

In this section, we state our main irrelevance result and discuss some important equilibrium

properties that drive the result.

3.1 Irrelevance result

Before stating our result, we recall the classical all-pay auction model where instead of bid-

ding over two stages, the players submit a single bid. In this normal-form game, there is a

unique Nash equilibrium, and it is such that both players bid uniformly on the interval [0, 1].

Consequently, the equilibrium payoff of both players is zero, and the auctioneer’s profit is

also zero (Barut and Kovenock [4]).

Our main result is that these properties of the equilibrium extend to our two-stage all-pay

auction model, irrespective of the feedback policy in place.

Theorem 1. For any feedback policy P that satisfies Assumption 1, and any pure strategy

sequential equilibrium (β, µ),

u1(β, µ) = 0, u2(β, µ) = 0, and π(β, µ) = 0.

To prove this result, we will characterize pure-strategy sequential equilibria under any

feedback policy P , and show that an equilibrium (β, µ) always exhibits the above properties.

3.2 Equilibrium characterization

Consider any feedback policy P that satisfies Assumption 1. Intuitively, since bids in the

two stages are perfect substitutes, the only potential benefit from choosing a non-zero first

stage bid arises from the signal it generates. Given this, it is reasonable to suspect that, for

any target signal, a player should choose the cheapest possible first stage bid which generates

the signal. Based on this, we define the corresponding cheapest signal belief for the players.

Definition 1. A belief µi : P → ∆[0, 1] is a Cheapest Signal Belief (CSB) if, for any signal

S ∈ P ,

µi(S) = δS.
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In other words, under the CSB, whenever a player observes a public signal S ∈ P , their

belief about their opponent’s first stage bid is entirely concentrated at the lowest possible

bid that could have generated S, namely S.

We now define a Cheapest Signal Strategy (CSS), which not only ensures that a player

chooses the cheapest possible first-stage bid associated with some signal, but also specifies

their second-stage bidding behavior under the CSB. The definition is inspired by the unique

equilibrium of a single-stage all-pay auction with exogenous head starts (Siegel [27], Konrad

[22]), which we restate below in our framework using the context of the Full feedback policy.

Lemma 2. Consider the feedback policy PFULL. For any first-stage bids b11, b21 ∈ [0, 1],

there exists a unique Nash equilibrium in second-stage bids. In this equilibrium, for each

player i ∈ {1, 2}, the total bid of player i is

bi1 + bi2 =

bi1 with probability |b11 − b21|

U(max{b11, b21},min{b11, b21}+ 1] otherwise
.

Furthermore, each player’s equilibrium utility, accounting for the cost of first-stage bids, is

ui = −min{b11, b21}.

Thus, each player bids zero in the second stage with a probability equal to the absolute

difference in first-stage bids (i.e., the head start), and otherwise ensures that their total bid

is uniformly distributed on the interval (max{b11, b21},min{b11, b21}+ 1].

Returning to the definition of CSS, given any bi1 ∈ [0, 1] and signal S−i ∈ P , a player

holding the CSB believes that the winning total bid must be at least max{bi1, S−i}. At

the same time, they believe that some player’s total bid cannot exceed min{bi1, S−i} +

1. Hence, in the second stage, player i will either bid 0 (so that their total bid equals

their first-stage bid) or bid positively and ensure their total bid lies within the interval,

(max{bi1, S−i},min{bi1, S−i} + 1]. In the CSS, we specify the exact distribution of bids for

some important information sets, drawing on the structure in Lemma 2.

Definition 2. A strategy βi = (βi1, βi2) is a Cheapest Signal Strategy (CSS) if:

1. There exists an Si ∈ P such that βi1 = δSi
.
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2. Fix any bi1 ∈ [0, 1] and S−i ∈ P .

(a) If bi1 = P(bi1), then βi2(bi1, S−i) is such that

bi1 + bi2 =

bi1 with probability |bi1 − S−i|

U(max{bi1, S−i},min{bi1, S−i}+ 1] otherwise
.

(b) Otherwise, βi2(bi1, S−i) is such that

bi1 + bi2 ∈ ∆(max{bi1, S−i},min{P(bi1), S−i}+ 1].

Under CSS, in the first stage, a player chooses the cheapest possible first-stage bid asso-

ciated with some signal. Furthermore, for the second stage, on information sets where it did

choose a cheapest signal in the first stage, it’s bidding is as prescribed by the second-stage

equilibrium strategy in Lemma 2, with b−i1 replaced by S−i. On information sets where it

did not chose the cheapest signal, CSS only requires that the total bid is in the interval

(max{bi1, S−i},min{P(bi1), S−i}+ 1], with no restriction on the distribution.

We are now ready to present our characterization of pure-strategy equilibrium outcomes.

We first show that any assessment (β, µ) in which both agents play CSS and hold CSB, and

at least one agent bids 0 in stage 1, constitutes a sequential equilibrium. The beliefs are

clearly consistent under CSS, and the close correspondence of second-stage bids in CSS to

those in Lemma 2 ensures that the strategies are sequentially rational. Moreover, at least

one agent must bid 0 in stage 1. Intuitively, if both agents were to bid positive amounts

in the first stage, sequential rationality would imply that on-path second-stage bids follow

Lemma 2, yielding negative equilibrium utilities. An agent could then profitably deviate by

bidding 0 in both stages, thereby obtaining a strictly higher payoff.

Proposition 1. Any assessment (β, µ) in which β1 and β2 are Cheapest Signal Strategies

with βi1 = δ0 for some i ∈ {1, 2}, and µ1, µ2 are Cheapest Signal Beliefs, is a sequential

equilibrium.

We will refer to the set of all such assessments as Cheapest Signal Equilibria (CSE).

To complete the characterization, we next show that any pure-strategy sequential equi-

librium must be outcome-equivalent to a Cheapest Signal Equilibrium. As before, in any

candidate pure-strategy equilibrium, sequential rationality implies that on-path second-stage
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bids follow the structure in Lemma 2. Thus, for the same reason discussed above, at least

one agent must bid 0 in the first stage. Furthermore, the other agent must also be choosing

the cheapest first-stage bid consistent with some signal. If not, we show that this agent

can deviate to a smaller first-stage bid that induces the same signal and obtain strictly

higher utility.3 Hence, every pure-strategy sequential equilibrium is outcome-equivalent to a

Cheapest Signal Equilibrium in which agents choose the corresponding first-stage bids.

Proposition 2. Every pure-strategy sequential equilibrium is outcome-equivalent to some

Cheapest Signal Equilibrium (i.e., the induced on-path bidding is identical).

It follows that for the purpose of analyzing equilibrium outcomes, it is without loss of

generality to restrict attention to Cheapest Signal Equilibria. We now prove Theorem 1.

Proof of Theorem 1. Suppose feedback policy P satisfies Assumption 1 and (β, µ) is a pure-

strategy sequential equilibrium under P . By Proposition 2, there exists a Cheapest Signal

Equilibrium (β′, µ′) which is outcome-equivalent. In this equilibrium, observe that there is

some i ∈ {1, 2} such that 0 is in the support of bi, and Pr[b−i ≤ 0] = 0. It follows that

ui(β
′, µ′) = 0. For j ̸= i, we have that 1 is in the support of bj and Pr[b−j < 1] = 1. It

follows that uj(β
′, µ′) = 0. As a consequence, we also get that the auctioneer’s expected

profit is π(β′, µ′) = 0. By outcome equivalence, these properties extend to the equilibrium

(β, µ).

3.3 Rank feedback

Theorem 1 establishes irrelevance for a fairly broad family of feedback policies. However, it

excludes some natural policies, such as one where the players are ranked based on their first

stage bids (with ties broken uniformly at random). We refer to this policy as Rank feedback

(PRANK): if player i bids bi1 in stage 1, it learns whether b−i1 ∈ [0, bi1] or b−i1 ∈ [bi1, 1].

We show that in any equilibrium under Rank feedback, both players bid 0 in stage 1, and

then play the one-shot equilibrium of bidding U [0, 1] in stage 2 (on path). It follows that

Theorem 1 extends to the Rank feedback policy.

3The restriction to sequential equilibrium is critical for this argument. The reasoning does not extend to

PBE: under a PBE, a player may revise their belief about the opponent’s first-stage bid when deviating to

a smaller bid, potentially eliminating the profitable deviation. As we show in Lemma 1, such a revision of

beliefs is not possible under sequential equilibrium.
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Proposition 3. Consider the feedback policy PRANK. If (β, µ) is a pure-strategy sequential

equilibrium, it must be that β11 = β21 = δ0 and bi ∼ U(0, 1] (on path). Moreover, such an

equilibrium exists.

3.4 Second stage bidding

Given any feedback policy P , it follows from Propositions 1 and 2 that any pure-strategy

sequential equilibrium involves at least one player bidding 0 in stage 1. Consequently, any

such equilibrium, apart from the one where both players bid 0 in stage 1, is asymmetric and

essentially require the players to coordinate on which player bids 0 in the first stage. However,

it is reasonable to suspect that coordination failures may occur, and both players enter stage

2 having bid positively in stage 1. In such cases, the stage 1 bids are sunk costs, and bidding

behavior in stage 2 should treat them as such. We note some testable implications for second

stage bidding under Cheapest Signal Strategies in the following proposition.

Proposition 4. If βi is a Cheapest Signal Strategy with βi1 = δbi1, then for any S−i ∈ P,

we have the following:

1. Pr[bi1 + bi2 > 1] = min{bi1, S−i} (the sunk cost).

2. Pr[bi2 = 0] = |bi1 − S−i| (the head start).

3. E[bi2] =


1
2

[
1− (bi1 − S−i)

]2
if bi1 ≥ S−i

1
2

[
1− (bi1 − S−i)

2
]

if bi1 ≤ S−i.

In words, if player i is playing CSS and bids bi1 in stage 1, and observes signal S−i, then

their second stage bidding should be such that their total bid exceeds the value of the prize

with a probability equal to min{bi1, S−i}. Intuitively, min{bi1, S−i} is player i’s sunk cost and

shouldn’t affect their second stage bids. This leads to the sunk cost effect : if player i’s sunk

costs increase, so should the probability that their total bid exceeds the value of the prize.

Further, player i should bid 0 (drop out) in the second stage with a probability equal to the

perceived head start, |bi1−S−i|, and more generally, the mean second stage bid is decreasing

in this head start. This presents an instance in our framework of the classical discouragement

effect : if the perceived head start increases, player i’s second stage bids should be lower.
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4 Experiment

In this section, we present a laboratory experiment designed to test the key equilibrium pre-

dictions of our two-stage all-pay auction model: the irrelevance of feedback policy for auction-

eer’s profit (Theorem 1 and Proposition 3), and the sunk cost effect and the discouragement

effect in second stage bidding behavior under Cheapest Signal Strategies (Proposition 4).

4.1 Treatments

In our implementation of the two-stage all-pay auction, each subject was endowed with a

starting ‘balance’ of 40 dirhams, and submitted (integer) bids in two stages for a prize worth

20 dirhams. In the first stage, bids could be any amount from 0 to 40. In the second stage,

bids were constrained so that the total bid would not exceed the starting balance: if the first

stage bid was k, the second stage bid must be between 0 to 40− k.

After the first stage, subjects were provided feedback about the first stage bid of their

opponent according to a feedback policy, which was publicly announced at the beginning.

After second stage, the exact bids of both players in the two stages were revealed. The player

with the higher total bid received the prize, and both players paid their total bid from their

starting balance and kept the remainder. The final payoff, or the ‘final balance’, was 40 +

20 - total bid for the high bidder and 40 - total bid for the low bidder. All ties were broken

by a fair virtual coin flip.

Subjects participated in four feedback policy treatments:

1. Full feedback (F): Under this policy, subjects were informed about the exact stage 1

bid of their opponent.

2. Cutoff 5 feedback (C5): Under this policy, subjects were informed whether or not their

opponent’s stage 1 bid was at least 5.

3. Cutoff 10 feedback (C10): Under this policy, subjects were informed whether or not

their opponent’s stage 1 bid was at least 10.

4. Rank feedback (R): Under this policy, subjects were informed whether their opponent’s

stage 1 bid was higher or lower than their own stage 1 bid, with ties again broken by
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a fair virtual coin flip. Consequently, each subject could infer whether they were the

leader or the laggard at the end of stage 1.

For our analysis, we normalize the data by dividing all bids and cutoffs by 20 so as to

maintain consistency with the theoretical model.

4.2 Procedures

We ran 12 sessions at the SSEL laboratory at the NYU Abu Dhabi campus. Subjects were

recruited from the undergraduate student population of NYU Abu Dhabi. Each session had

between 10 and 20 subjects, and lasted about one hour.

Table 1: Session Information

Session Date Treatment Order Subjects

1 11/28/24 F, R, C5, C10 12

2 1/27/25 R, C10, C5, F 14

3 1/31/25 C5, C10, F, R 20

4 2/22/25 R, C5, F, C10 10

5 5/23/25 F, C10, R, C5 12

6 11/28/24 R, F, C10, C5 16

7 11/29/24 C5, F, R, C10 18

8 11/29/24 C10, F, C5, R 14

9 12/06/24 F, C5, C10, R 16

10 12/13/24 C10, C5, R, F 14

11 1/24/25 C5, R, C10, F 16

12 1/24/25 C10, R, F, C5 18

At the beginning of each session, subjects read through instructions and answered quiz

questions, and could only advance to the game after answering all quiz questions correctly.

After all subjects completed the quiz, five training rounds of the two-stage auction game

with a no information feedback policy were played, to familiarize subjects with the interface

and the game. Five rounds of each of the four feedback policy treatments were then played

in turn, so that each of the 180 subjects played a total of 20 games. The five rounds of

a treatment were played back-to-back, to make it easier for subjects to understand and
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remember the feedback policy that applied in a given round. Subjects were randomly re-

matched between all rounds, including the no information practice rounds. The order of the

treatments was shuffled between sessions, so that each treatment appeared first, second, third

or fourth in the treatment order exactly three times. This was done to eliminate treatment

order effects in the statistical analysis. The experimental interface and instructions are

provided in Appendix C.

4.3 Hypotheses

We present five hypotheses based on our theoretical results. The first two are derived from

the irrelevance result in Theorem 1 and Proposition 3.

Hypothesis 1 (Irrelevance - 1). The average profit of the auctioneer is the same in every

treatment.

Hypothesis 1 is the main hypothesis of interest from the design perspective. It says that

the auctioneer in the two-stage all-pay auction cannot influence profits with their choice of

feedback policy.

Hypothesis 2 (Irrelevance - 2). The average profit of the auctioneer is zero in every treat-

ment.

Hypothesis 2 is stronger than Hypothesis 1, in that it says the average profit is not just

the same, but zero across treatments. In particular, if we observe over-bidding relative to

equilibrium but this overbidding is equal across feedback policies, then we may reject Hy-

pothesis 2 while at the same time be unable to reject Hypothesis 1.

The remaining three hypotheses are about the sunk cost effect and discouragement effect

in second stage bidding behavior identified in Proposition 4. Since the result assumes that

the player is playing Cheapest Signal Strategies, we state the hypotheses under the following

assumption.

Assumption 2. The first stage bid of player i, bi1, is the cheapest bid that generates the

signal P(bi1) (i.e., bi1 = P(bi1)).

When Assumption 2 does not hold, the definition of CSS is flexible and does not put

much structure on what the second stage bidding behavior should be. In fact, in such a case,

there is evidence that the player is not playing CSS, or for that matter, any pure strategy
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that could be sustained in pure-strategy sequential equilibrium. Therefore, we will state and

test the following hypotheses only under Assumption 2.

Hypothesis 3 (Sunk cost effect). Under Assumption 2, for any S−i ∈ P , the frequency

with which player i’s total bid bi exceeds the value of the prize is equal to min{bi1, S−i}. In
particular, under the F treatment, this equals min{bi1, b−i1}.

Focusing on the F treatment, min{bi1, b−i1} represents sunk costs after stage 1 and

shouldn’t influence second stage bids. Consequently, total bid should exceed the value of the

prize with a probability equal to min{bi1, b−i1}. If the observed behavior reveals a stronger

effect of sunk costs, it can be interpreted as evidence in favor of the sunk cost fallacy, as

bidders continue to invest more heavily simply because they have already committed signif-

icant resources. On the other hand, if the observed behavior reveals a weaker effect, it may

reflect a reluctance to bid beyond the prize value, even though doing so would be consistent

with equilibrium play.

Our last two hypotheses are about the discouragement effect. The first one is about the

probability of dropping out, while the second one is about the mean second stage bid.

Hypothesis 4 (Discouragement effect - 1). Under Assumption 2, for any S−i ∈ P , the

frequency with which player i’s second-stage bid bi2 is zero is equal to |bi1−S−i|. In particular,

for the F treatment, this equals |bi1 − b−i1|.

Hypothesis 5 (Discouragement effect - 2). Under Assumption 2, for any S−i ∈ P , the

average second-stage bid bi2 of player i is

E[bi2] =


1
2

[
1− (bi1 − S−i)

]2
if bi1 ≥ S−i

1
2

[
1− (bi1 − S−i)

2
]

if bi1 ≤ S−i.

These hypotheses capture how an increase in the perceived head start (or heterogeneity)

is detrimental for bids in the second stage. Specifically, they are more likely to be 0, and

also their mean is lower. Hypotheses 1–3 were pre-registered; 4 and 5 were formulated later

based on the same model and equilibrium.

5 Experiment Results

In this section, we present our findings from the experiment. We normalize the data by

dividing all bids and cutoffs by 20 to maintain consistency with the theoretical model.
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5.1 Observations

We begin with some observations from the empirical CDF’s of stage 1 bids, stage 2 bids,

and total bids, shown in Figure 1.

The distributions of total bids are broadly similar across treatments, implying a similarity

of means, consistent with the irrelevance result. However, there is also evidence of behavior

that deviates from equilibrium predictions. The total bid exceeds the prize value roughly

10% of the time, which should never occur in equilibrium. That said, such bids may result

from coordination failures in stage 1, consistent with the sunk-cost effect. In the cutoff

treatments, nearly 40% of stage 1 bids deviate from cheapest signal bidding (i.e., they are

not 0 or 5
20

= 0.25 in C5, and not 0 or 10
20

= 0.5 in C10). Moreover, the frequency with

which total bid equals the cutoff should be the same as the frequency with which it equals

zero, yet total bids of zero are substantially more common than those at the cutoff in either

treatment, which indicates a pronounced discouragement effect.

Figure 1: Bid Distributions
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5.2 Irrelevance result

We now discuss Hypotheses 1 and 2, derived from the irrelevance result in Theorem 1 and

Proposition 3.

Hypothesis 1 states that auctioneer profits are equal across treatments. We test this us-

ing two-sample t-tests. Table 2 reports the t-statistics, with p-values in parentheses, for all

six pairwise treatment comparisons. The hypothesis of equal auctioneer profit is not rejected

for any of these comparisons.

Table 2: Test for Hypothesis 1 (Same profit)

R C5 C10

F -0.526 0.065 -0.158

(0.60) (0.95) (0.87)

R . 0.560 0.369

(0.58) (0.71)

C5 . . -0.213

(0.83)

Hypothesis 2 states that auctioneer profits are zero across treatments. We test this using

one-sample t-tests with a null hypothesis of zero mean profit. The results are presented

in Table 3. The p-values for all treatments are essentially zero, allowing us to reject the

hypothesis of zero auctioneer profits.

Table 3: Test for Hypothesis 2 (Zero profit)

Treatment Mean 95% CI Lower 95% CI Upper t-statistic p-value

F 0.072 0.034 0.110 3.74 1.96e-4

R 0.087 0.046 0.127 4.23 2.54e-5

C5 0.070 0.027 0.112 3.24 1.23e-3

C10 0.076 0.038 0.115 3.89 1.08e-4

18



5.3 Second stage bidding

In this subsection, we discuss Hypotheses 3 through 5, which concern the sunk cost effect

and discouragement effect in second stage bidding behavior identified in Proposition 4.

For these hypotheses, we estimate the coefficients from a series of linear regressions to

assess whether these coefficients are consistent with their predicted values. Each regression

has a dependent variable yi, which is a function of bi2, and takes the following form:

yi = β0 + β1min{bi1, S−i}︸ ︷︷ ︸
Sunk Cost

+β2 |bi1 − S−i|︸ ︷︷ ︸
Head Start

+β3 |bi1 − S−i|2︸ ︷︷ ︸
Head Start2

+ϵi.

For Hypothesis 3, we use yi = 1{bi > 1}, an indicator for whether the total bid exceeds

the prize value.

For Hypothesis 4, we use yi = 1{bi2 = 0}, an indicator for whether the stage 2 bid is

zero.

For Hypothesis 5, we use yi = bi2.

This specification is chosen because it is the minimal model that nests the equilibrium

predictions for each of these dependent variables. Moreover, it captures the two key determi-

nants of stage 2 bidding that we believe are strategically and behaviorally interesting, sunk

costs and head starts.

We estimate each regression on the F treatment alone, since in this treatment any stage

1 bid satisfies Assumption 2. We also estimate using pooled data with the cutoff treatments,

while restricting the sample to stage 1 bids that satisfy Assumption 2. We also estimate

separate regressions for leaders and laggards after stage 1 bidding.

Hypothesis 3 states that if a player enters stage 2 having bid bi1 in stage 1 (which is the

cheapest bid for some signal), and observes a signal S−i ∈ P , then its stage 2 bid must be

such that the total bid exceeds the value of the prize with probability min{bi1, S−i}, which
is its sunk cost. This yields the following hypothesized linear probability model:

1{bi > 1} = Sunk Costi + ϵi.

Thus, the probability that the total bid exceeds the prize value is increasing in sunk

costs, and independent of the head start. Behaviorally however, players who have already
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invested more in stage 1 may bid more aggressively in stage 2, in line with the sunk cost

fallacy. Alternatively, players may be reluctant to submit total bids above the prize value,

since doing so guarantees a negative final payoff.

Table 4: Test for Hypothesis 3 (Exceed prize value)

Treatment: F Treatments: F, C5, C10

Pooled Leader Laggard Pooled Leader Laggard

(1) (2) (3) (4) (5) (6)

Sunk Cost 0.87 1.06 0.77 0.50 0.46 0.33

(0.11) (0.14) (0.11) (0.06) (0.07) (0.06)

Head Start 0.16 0.28 −0.02 0.10 0.16 0.06

(0.11) (0.15) (0.12) (0.07) (0.09) (0.07)

Head Start2 0.14 0.20 0.13 0.20 0.32 0.03

(0.15) (0.21) (0.16) (0.10) (0.14) (0.12)

Constant 0.03 0.03 0.03 0.02 0.02 0.02

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Observations 900 600 600 2,000 1,507 1,556

R2 0.11 0.16 0.08 0.06 0.09 0.02

Note: Standard errors in parentheses.

The linear probability regression estimates for Hypothesis 3 are reported in Table 4. In

the F treatment, the coefficient on sunk cost is not statistically different from 1, though it

declines significantly when data from the C5 and C10 treatments are included. The head

start coefficients are not statistically different from zero, and while the constant term is posi-

tive and significant, its magnitude is small. We interpret these findings as broadly consistent

with the equilibrium predictions.
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Hypothesis 4 states that if a player enters stage 2 having bid bi1 in stage 1 (which is the

cheapest bid for some signal), and observe a signal S−i ∈ P , then its stage 2 bid must be zero

with probability |bi1 − S−i|, which is the head start. This yields the following hypothesized

linear probability model:

1{bi2 = 0} = Head Starti + ϵi

Thus, the probability that a player bids zero in stage 2 is increasing in head start, and

independent of the sunk costs. This reflects the discouragement effect widely studied in the

contest literature: as contest becomes unfair, incentives to exert effort are weakened.

Table 5: Test for Hypothesis 4 (Zero stage 2 bid)

Treatment: F Treatments: F, C5, C10

Pooled Leader Laggard Pooled Leader Laggard

(1) (2) (3) (4) (5) (6)

Sunk Cost −0.51 −0.41 −0.66 −0.57 −0.48 −0.61

(0.16) (0.19) (0.22) (0.12) (0.13) (0.14)

Head Start 0.35 −0.30 0.83 0.26 −0.60 0.89

(0.17) (0.20) (0.23) (0.13) (0.16) (0.17)

Head Start2 −0.05 0.50 −0.45 −0.04 0.83 −0.62

(0.23) (0.28) (0.32) (0.20) (0.26) (0.28)

Constant 0.16 0.17 0.18 0.25 0.25 0.26

(0.02) (0.02) (0.02) (0.01) (0.01) (0.01)

Observations 900 600 600 2,000 1,507 1,556

R2 0.04 0.01 0.07 0.02 0.02 0.06

Note: Standard errors in parentheses.
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The linear probability regression estimates for Hypothesis 4 are reported in Table 5.

Sunk costs have a significant negative effect on the likelihood of bidding 0 in the second

stage, even though it should have no influence in equilibrium. Moreover, the coefficient on

head start is significantly below one, while the constant term is positive and large. These

findings indicate a departure from equilibrium behavior and may be interpreted as evidence

consistent with the sunk-cost fallacy.

Finally, Hypothesis 5 states that if a player enters stage 2 having bid bi1 in stage 1 (which

is the cheapest bid for some signal), and observe a signal S−i ∈ P , then its mean stage 2 bid

must take the form in Proposition 4, which yields the following hypothesized linear model

for the discouragement effect:

bi2 =

1
2
− Head Starti +

1
2
Head Start2i + ϵi if bi1 ≥ S−i

1
2
− 1

2
Head Start2i + ϵi if bi1 ≤ S−i.

Thus, the mean stage 2 bid decreases with the head start (for both leaders and laggards),

another manifestation of the discouragement effect, and is independent of sunk costs.

The linear regression estimates for Hypothesis 5 are reported in Table 6. Sunk costs

have a positive effect on stage 2 bids, though the coefficients are insignificant for leaders.

The coefficients on head start and its square imply that the marginal effect of increasing

head start on the stage 2 bid is positive for small values but becomes negative thereafter.

The constant term is positive but significantly below 1
2
. Overall, these results provide mixed

evidence: they reveal a discouragement effect of increasing head start, while also suggest-

ing the presence of a sunk-cost fallacy that is more pronounced among laggards than leaders.

Taken together, the regression results suggest that the bidding behavior deviate from

equilibrium (or CSS), and exhibits the following behavioral patterns. Higher sunk costs are

linked to a lower probability of dropping out and to higher stage 2 bids, consistent with the

sunk-cost fallacy. Nonetheless, this effect is somewhat moderated by the prize value, as total

bids do not exceed the prize more frequently than predicted. Higher head starts do seem to

be associated with lower stage 2 bids, though this discouragement effect appears to kick in

only when the head start is not too small. Moreover, this effect is not as pronounced as the

equilibrium predicts.
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Table 6: Test for Hypothesis 5 (Mean stage 2 bid)

F F, C5, C10

Leader Laggard Leader Laggard

(1) (2) (3) (4)

Sunk Cost 0.06 0.52 0.15 0.31

(0.19) (0.21) (0.12) (0.13)

Head Start 0.16 0.22 0.10 0.19

(0.20) (0.22) (0.14) (0.15)

Head Start2 −0.47 −0.56 −0.37 −0.44

(0.28) (0.30) (0.23) (0.24)

Constant 0.44 0.42 0.38 0.37

(0.02) (0.02) (0.01) (0.01)

Observations 600 600 1,507 1,556

R2 0.01 0.02 0.01 0.01
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6 Conclusion

In this paper, we study how feedback policies affect investment behavior in a two-stage, two-

player all-pay auction. We introduce the notions of Cheapest Signal Beliefs and Cheapest

Signal Strategies and show that they characterize the set of (stage 1 pure) sequential equi-

librium outcomes. In any equilibrium, stage 1 bids are such that one player bids zero while

the other chooses the cheapest bid consistent with some signal, and stage 2 bidding mimics

the unique (mixed) Nash equilibrium of an all-pay auction with exogenous head starts. This

characterization yields an irrelevance result: equilibrium payoffs for both players and the

auctioneer’s profits are zero, regardless of the feedback policy. Further, since stage 1 bids

induce sunk costs and head starts, we examine how these features influence stage 2 bidding,

focusing on the sunk-cost effect (prior investments should not affect subsequent bids), and

the discouragement effect (greater disparities in early bids reduce later investment).

We conducted a laboratory experiment to test these predictions. We used four feedback

policy treatments, a full feedback treatment, a rank treatment, and two cutoff treatments.

While the auctioneer obtains positive profits across treatments, the difference in magnitudes

is statistically insignificant and we fail to reject the hypothesis of no treatment effect on

total bids. For stage 2 bidding, we find that the bids are increasing in sunk costs, in line

with the sunk cost fallacy, though the effect is somewhat guarded by the prize value. The

discouragement effect of higher head starts kicks in when it is not too small, and is not as

large as predicted.

Our analysis suggests several promising avenues for future research. To begin, it would

be interesting to study whether the effect of sunk costs and head start are robust to being

exogenously fixed, or does the fact that the players actually chose the stage 1 bids matter for

how they bid in the stage 2. Additionally, since bids in the two stages are perfect substitutes,

there isn’t really a benefit to bidding in stage 1, except perhaps to deter the other player.

It would be interesting to study variations of the model with convex costs, or private types,

where stage 1 bids would potentially have greater significance.
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A Proofs for Section 2 (Model)

Lemma 1. If (β, µ) is a sequential equilibrium, then µi must be such that for any bi1, b
′
i1 ∈

[0, 1] and S ∈ P,

µi(bi1, S) = µi(b
′
i1, S).

Proof. Fix any i ∈ {1, 2}, bi1, b′i1 ∈ [0, 1] and S ∈ P . Since (β, µ) is a sequential equi-

librium, there exists a sequence of completely mixed strategy profiles β1, β2, . . . , such that

limn→∞ βn = β and limn→∞ µn = µ, where µn is the unique Bayesian belief profile under

strategy profile βn. It follows that for each n,

µn
i (bi1, S) = µn

i (b
′
i1, S),

and hence, it must be that µi(bi1, S) = µi(b
′
i1, S).

B Proofs for Section 3 (Theoretical Results)

Proposition 1. Any assessment (β, µ) in which β1 and β2 are Cheapest Signal Strategies

with βi1 = δ0 for some i ∈ {1, 2}, and µ1, µ2 are Cheapest Signal Beliefs, is a sequential

equilibrium.

Proof. Suppose (β, µ) is such an assessment. We will show that (β, µ) is a sequential equi-

librium.

1. Beliefs are Bayesian: For player i, since β−i is a CSS, the belief µi is indeed Bayesian

consistent.

2. Strategies are sequentially rational:

Stage 2

Consider player i and suppose it bid bi1 and received a signal S−i ∈ P . Then, µi = δS−i
.

Given β−i, its belief about the total bid of the other player will be

b−i =

S−i with probability |S−i − P(bi1)|

U(max{S−i,P(bi1)},min{S−i,P(bi1)}+ 1] otherwise
.
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From here, it is clear that an optimal bi2 must be such that

bi ∈ {bi1} ∪ (max{S−i, bi1},min{S−i,P(bi1)}+ 1].

Moreover, within the interval (max{S−i, bi1},min{S−i,P(bi1)}+1], the marginal benefit

from increasing bi is equal to the marginal cost, and hence the player must be indifferent

between all such bids. Thus, to find the optimal bid(s), we can simply compare the util-

ity from choosing bi = bi1 (i.e., bi2 = 0) to that from choosing bi = min{S−i,P(bi1)}+1.

(a) bi = bi1: In this case, player i’s utility equals Pr[b−i < bi1]. If bi1 > S−i, then

this probability equals bi1 −min{S−i,P(bi1)}. If bi1 ≤ S−i, then this probability

equals 0.

(b) bi = min{S−i, S
′
i}+ 1: In this case, player i wins for sure, and hence it’s utility is

1− bi2 = bi1 −min{S−i,P(bi1)}.

It follows that βi2(bi1, S−i), as defined under the CSS, is optimal.

Stage 1

Consider player i. Given β−i, it follows from above that the gain from bidding bi1 in

stage 1 is

bi1 −min{S−i,P(bi1)},

while the cost is bi1. Thus, the utility is simply

−min{S−i,P(bi1)}.

Now if S−i ̸= 0, bi1 = 0 is optimal. And if S−i = 0, any bi1 such that bi1 = P(bi1) is

optimal. It follows that β1 and β2 are sequentially rational.

3. Beliefs are consistent: It is straightforward to construct a sequence of completely mixed

strategies that converge to β1, β2 so that the induced Bayesian beliefs converge to µ1, µ2.

The main restriction introduced is that the belief µi must depend only on the feedback

S−i ∈ P (Lemma 1), which is indeed the case.

Thus, (β, µ) is a sequential equilibrium.

Proposition 2. Every pure-strategy sequential equilibrium is outcome-equivalent to some

Cheapest Signal Equilibrium (i.e., the induced on-path bidding is identical).
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Proof. Suppose (β, µ) is a pure-strategy sequential equilibrium. Then, for each i ∈ {1, 2},
there is a bi1 ∈ [0, 1] such that βi1 = δbi1 . Since the belief should be Bayesian and consistent,

we must have

µi(P(b−i1)) = δb−i1
.

Sequential rationality further implies that, on path, βi2(bi1,P(b−i1)) is such that

bi =

bi1 with probability |b11 − b21|

U(max{b11, b21},min{b11, b21}+ 1] otherwise
,

and the equilibrium utility of player i is −min{b11, b21} (Lemma 2).

Now if both b11, b21 > 0, a player can deviate to bidding 0 in both stages and obtain a

strictly higher utility, which contradicts (β, µ) being an equilibrium. Thus, there must be

some j ∈ {1, 2} such that bj1 = 0. Now consider i ̸= j. Given β−i as above, observe that

if there exists a b′i1 ∈ P(bi1) such that 0 < b′i1 < bi1, then player i can bid b′i1 in stage 1,

and bid b′i2 = 0 in stage 2, obtaining a utility of bi1 − b′i1 > 0, which again contradicts (β, µ)

being a sequential equilibrium. Thus, it must be that bi1 = P(bi1). This equilibrium (β, µ) is

outcome equivalent to the Cheapest Signal Equilibrium (β′, µ′) where β′
j1 = δ0 and β′

i1 = δS

where S = P(bi1).

Proposition 3. Consider the feedback policy PRANK. If (β, µ) is a pure-strategy sequential

equilibrium, it must be that β11 = β21 = δ0 and bi ∼ U(0, 1] (on path). Moreover, such an

equilibrium exists.

Proof. Suppose (β, µ) is a pure-strategy sequential equilibrium. Then, for each i ∈ {1, 2},
there is a bi1 ∈ [0, 1] such that βi1 = δbi1 . Using an argument analogous to that of Proposition

2, we can show that there must be some j ∈ {1, 2} such that bj1 = 0. Further, for i ̸= j, if

bi1 > 0, then player i can deviate to bidding b′i1 such that 0 < b′i1 < bi1 in stage 1 and b′i2 = 0

in stage 2, and obtain a strictly higher utility. Thus, it must be that β11 = β21 = δ0, and

hence, bi ∼ U(0, 1] on path.

We now show by construction that such an equilibrium exists. The construction (β, µ)

is a simple adaptation of CSS and CSB for the rank feedback policy, defined as follows: For

each i ∈ {1, 2}, let
µi(bi1, [0, bi1]) = δ0 and µi(bi1, [bi1, 1]) = δbi1 ,

and let βi be defined as follows:
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1. βi1 = δ0,

2. For any bi1 ∈ [0, 1],

(a) If S−i = [0, bi1], then βi2(bi1, S−i) is such that

bi =

bi1 with probability bi1

U(bi1, 1] otherwise
,

(b) If S−i = [bi1, 1], then βi2(bi1, S−i) is such that

bi ∼ U(bi1, 1].

It is straightforward to verify that the strategies are sequentially rational, and the beliefs

are Bayesian and consistent.

Proposition 4. If βi is a Cheapest Signal Strategy with βi1 = δbi1, then for any S−i ∈ P,

we have the following:

1. Pr[bi1 + bi2 > 1] = min{bi1, S−i} (the sunk cost).

2. Pr[bi2 = 0] = |bi1 − S−i| (the head start).

3. E[bi2] =


1
2

[
1− (bi1 − S−i)

]2
if bi1 ≥ S−i

1
2

[
1− (bi1 − S−i)

2
]

if bi1 ≤ S−i.

Proof. The first two claims follow directly from the definition of CSS. For the third claim,

first suppose bi1 ≥ S−i. Then, by definition,

E[bi2] = 0 ∗ |bi1 − S−i|+
(0 + S−i + 1− bi1)

2
(1− |bi1 − S−i|)

=
1

2

[
1− (bi1 − S−i)

]2
.

Similarly, if bi1 ≤ S−i,

E[bi2] = 0 ∗ |bi1 − S−i|+
(S−i − bi1 + 1)

2
(1− |bi1 − S−i|)

=
1

2

[
1− (bi1 − S−i)

2
]
.
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C Experimental Instructions
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