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Abstract

We study k-price auctions in a complete information environment and characterize
all pure-strategy Nash equilibrium outcomes. In a setting with n agents having ordered
valuations, we show that any agent, except those with the lowest k− 2 valuations, can
win in equilibrium. As a consequence, worst-case welfare increases monotonically as
we go from second-price auction (k = 2) to lowest-price auction (k = n), with the
first-price auction achieving the highest worst-case welfare.

1 Introduction

We study k-price sealed-bid auctions in a complete information environment with n agents
who have strictly ordered valuations. In a k-price auction, all n agents submit their bids,
the highest bidder wins the object (with ties broken in favor of the agent with the highest
valuation), and pays the kth highest bid. We fully characterize the set of pure-strategy Nash
equilibrium outcomes for every k-price auction.

For k ∈ {2, . . . , n}, we show that any of the top n− (k − 2) valuation agents can win in
equilibrium, while the bottom (k−2) agents can never win. In other words, the second-price
auction can be won by any of the n agents, the third-price auction by any of the top n− 1
agents, and so on, until we reach the lowest-price auction (k = n), which can only be won
by the top two agents. We further show that in the first-price auction (k = n+ 1), only the
top agent can win. This equilibrium characterization reveals a natural ordering of k-price
auctions in terms of their worst-case allocative efficiency: the worst-case equilibrium alloca-
tion becomes strictly more efficient as k increases from 2 to n+ 1.
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In closely related work, Tauman (2002) and Mathews and Schwartz (2017) also study k-
price auctions in complete information environments. Under the restriction to pure strategies
that are not weakly dominated, Tauman (2002) shows that for any k-price auction, only the
top agent can win in equilibrium. Subsequently, Mathews and Schwartz (2017) construct
an equilibrium in mixed-strategies where the top agent does not win. In comparison, we
characterize all pure-strategy Nash equilibrium outcomes for all k-price auctions and obtain
an ordering of these auctions based on their worst-case allocative efficiency.1

2 Model

A seller is selling an indivisible object to a set N = {1, . . . , n} of agents. Each agent i ∈ N
has a valuation vi > 0 for the object, and we assume that

v1 > v2 > · · · > vn,

with vn+1 = 0. The valuations are common knowledge.

The object is sold using a sealed-bid k-price auction. Each agent i ∈ N simultaneously
submits a non-negative bid bi ∈ R+. The object is awarded to the agent who submits the
highest bid, with ties resolved in favor of the agent with the highest valuation. The winner
pays the kth highest bid, denoted b(k), and all other agents pay zero. The utility of agent
i ∈ N at bid profile b = (b1, . . . , bn) is

ui(b) =

{
vi − b(k) if i = min{j ∈ N : bj = b(1)},
0 otherwise.

We characterize the pure-strategy Nash equilibrium outcomes of the k-price auction for all
k ∈ {1, 2, . . . , n}, where k = 1 (also n + 1) denotes the first-price auction, k = 2 the
second-price auction, and k = n the lowest-price auction. Since we focus on pure strategies,
our characterization depends only on the ordinal ranking over bid profiles induced by ui.
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Moreover, the characterization holds under any tie-breaking rule for k ∈ {2, . . . , n}, and the
choice matters only in the case of the first-price auction.3

1Other work on k-price auctions has focused on incomplete information settings (Kagel and Levin (1993),
Monderer and Tennenholtz (2000, 2004), Mezzetti and Tsetlin (2009), Azrieli and Levin (2012), Mihelich
and Shu (2020), Skitmore (2014)).

2Formally, we can define an outcome set X = R+ ∪ {−1} for each agent, where x ∈ R+ represents the
payment made when it wins the object, and x = −1 denotes not winning. An agent i ∈ N with valuation
vi > 0 is represented by a preference relation ≻i over X, such that x ≻i y for all x < y ∈ R+, and −1 ∼i vi.
The equilibrium characterization in Proposition 1 holds as long as ui is consistent with ≻i for all i ∈ N .

3Previous work has typically assumed that ties are broken uniformly at random (Tauman (2002), Mathews
and Schwartz (2017)). Our assumption allows us to discuss the first-price auction alongside the other k-
price auctions in a unified way, aids exposition more generally, and is natural given our focus on welfare.
Additionally, from the seller’s perspective, implementing this tie-breaking rule requires only knowledge of
the ordinal ranking of agents’ valuations, not their exact values.
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3 Results

Our main result shows that under the k-price auction, any agent whose valuation ranks
among the top n− (k − 2) can win the object at any price between the n− (k − 3) highest
valuation and their own valuation, and no other outcomes can arise in equilibrium.

Proposition 1. Consider a k-price auction with k ∈ {2, . . . , n+ 1}. For any i ∈ {1, . . . , n}
and any p ∈ R+, there exists a pure-strategy Nash equilibrium in which agent i wins and
pays p if and only if

vi > vn−(k−3) and p ∈ [vn−(k−3), vi].

Proof. We first prove the forward direction. Suppose b is an equilibrium bid profile where
agent i wins and pays p. We begin by showing that the seller’s revenue p ≥ vn−(k−3).

Lemma 1. p ≥ vn−(k−3).

Proof. Suppose towards a contradiction that p = b(k) < vn−(k−3).

1. k = 2: For the second-price auction, p < vn−(k−3) simplifies to p < vn+1 = 0. But
p = b(2) ≥ 0, which is a contradiction.

2. k ∈ {3, . . . , n}: For this k-price auction, p < vn−(k−3) and p = b(k) imply that

(a) At least (n− (k − 3)) agents have valuation > p (as v1 > · · · > vn−(k−3) > p).

(b) At least k agents bid ≥ p at profile b.

It follows then that there are at least three distinct agents with valuations strictly
greater than p, each bidding at least p. At least two of these three agents receive
utility 0. At least one of these two agents can raise their bid above b(1) without
changing the price, thereby receiving strictly positive utility. This contradicts b being
an equilibrium.

3. k = n+ 1: For the first-price auction, p < vn−(k−3) simplifies to p < v2. Notice that at
least one of agents 1 and 2 receive utility 0, and this agent can deviate by bidding in
(b(1), v2), and receive strictly positive utility. This contradicts b being an equilibrium.

It follows that p ≥ vn−(k−3).

We now show that the winner’s valuation vi > vn−(k−3).

Lemma 2. vi > vn−(k−3).

Proof. Suppose towards a contradiction that vi ≤ vn−(k−3). From Lemma 1, agent i must
pay a price p ≥ vn−(k−3). Since i’s utility must be non-negative (as it can deviate to bidding
0 otherwise), the only possibility is that vi = p = vn−(k−3).

1. k = 2: For the second-price auction, vi = p = vn−(k−3) simplifies to vi = p = vn+1 = 0.
But vi > 0 for all i ∈ N , which is a contradiction.
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2. k ∈ {3, . . . , n}: For this k-price auction, vi = p = vn−(k−3) and p = b(k) imply that

(a) At least (n− (k − 2)) agents have valuation > p (as v1 > · · · > vn−(k−2) > p).

(b) At least k agents bid ≥ p at profile b.

It follows then that there are at least two distinct agents with valuations strictly greater
than p, each bidding at least p. Further, both these agents receive utility 0, and at
least one of these two agents can deviate by bidding > b(1), and receive strictly positive
utility. This contradicts b being an equilibrium.

3. k = n + 1: For the first-price auction, vi = p = vn−(k−3) simplifies to vi = p = v2.
But then, agent 1 receives a utility of 0, and it can deviate by bidding in the interval
(v2, v1), and receive strictly positive utility. This contradicts b being an equilibrium.

Thus, vi > vn−(k−3).

Together, it must be that winner’s valuation vi > vn−(k−3) and the price p ∈ [vn−(k−3), vi].

We now prove the reverse direction. Suppose vi > vn−(k−3) and p ∈ [vn−(k−3), vi]. We
construct an equilibrium profile where agent i wins and pays p.

1. k ∈ {2, . . . , n}: For this k-price auction, consider the bid profile b where

bi = v1 and b−i = ( p, . . . , p︸ ︷︷ ︸
n−(k−1) agents

, v1, . . . , v1︸ ︷︷ ︸
(k−2) agents

).

At profile b, agent i wins the k-price auction (as ties are broken in favor of agent with
highest valuation), and pays a price b(k) = p for the good. Agent i’s utility is vi−p ≥ 0
and for j ̸= i, agent j’s utility is 0. We now verify that b is indeed a Nash equilibrium.
Consider agent j ∈ N .

(a) j = i: If b′i ≥ v1, agent i’s utility does not change. If b′i < v1, agent i’s utility is
either 0 or does not change (possible when k = 2).

(b) j ∈ {1, . . . , n − (k − 2)} \ {i}: If b′j > v1, agent j’s utility will be vj − v1 ≤ 0. If
b′j ≤ v1, agent j’s utility will be either 0 or < 0.

(c) j ∈ {n− (k− 3), . . . , n}: If b′j > v1, agent j’s utility will be vj − p ≤ 0. If b′j ≤ v1,
agent j’s utility remains 0.

Thus, no agent has a profitable deviation, and b is an equilibrium in the k-price auction.

2. k = n + 1: For the first-price auction, vi > vn−(k−3) and p ∈ [vn−(k−3), v1] simplify to
vi > v2 and p ∈ [v2, v1]. Consider the bid profile

b = (p, . . . , p).

It is straightforward to verify that b is a Nash equilibrium in the first-price auction.
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Thus, there exists a Nash equilibrium where agent i wins and pays p.4

Proposition 1 yields a ranking of k-price auctions in terms of worst-case welfare. Let

W k = min{vi : ∃b such that b is an equilibrium of the k-price auction where agent i wins}.

Corollary 1. For k ∈ {2, . . . , n + 1}, the worst-case equilibrium welfare of k-price auction
is

W k = vn−(k−2).

Hence,
W 2 < W 3 < · · · < W n < W n+1.

Thus, the second-price auction is the worst, as even the lowest-valuation agent can win,
while higher values of k progressively exclude lower-valuation agents from winning in equilib-
rium, culminating in the first-price auction, where only the highest-valuation agent can win.5

Lastly, we illustrate our results through an example with n = 5 agents whose valuations
are v1 = 50, v2 = 40, v3 = 30, v4 = 20 and v5 = 10. In figure 1 the black bars show
the possible equilibrium welfare, while the grey vertical bars show the interval of possible
equilibrium prices. In the first-price auction, only agent 1 can win at a price in [40, 50]. In
the second-price auction, any agent i can win at a price in [0, vi]. And so on, until we reach
the lowest-price auction, where either agent 2 can win at a price in [30, 40] or agent 1 can
win at a price in [30, 50]. For example, under the lowest-price auction, b = (35, 70, 65, 60, 55)
is an equilibrium profile in which agent 2 wins (leading to welfare of 40) at price p = 35.

Figure 1: k-Price Auctions With 5 Agents

4For k ∈ {2, . . . , n}, our construction can be modified by setting bi > v1 so that the resulting profile
remains a Nash equilibrium with the same outcome, regardless of the tie-breaking rule. For the first-price
auction, however, such modifications need not exist, and the result relies on our assumed tie-breaking rule.

5From Proposition 1, the same ordering also emerges when ranking k-price auctions by worst-case revenue.
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